

STAT 703/J703 B.Habing Univ. of SC

9.5 Generalized Likelihood Ratio Tests

The Neyman-Pearson likelihood ratio test is most powerful for simple vs. simple.

Here, we generalize to composite hypotheses. The generalized LRT is not necessarily optimal, but works well for situations where no optimal test exists.

3

STAT 703/J703 B.Habing Univ. of SC

Observe X₁, ..., X_n from f(x| θ). Test H₀: $\theta \in \omega_0 \quad \omega_0 \subset \Omega$ vs. H_A: $\theta \in \omega_1 \quad (\omega_0 \cup \omega_1 = \Omega)$. Use the generalized LR statistic. $\Lambda = \frac{\theta \in \omega_0}{\max(lik(\theta))} = \frac{\max_{i=1}^n f(x_i \mid \theta)}{\max_{i=1}^n f(x_i \mid \theta)}$ STAT 703/703 Blabing Univ. of SC

Reject H₀ if $\Lambda \leq \lambda_0$, where λ_0 is P(rej. H₀| $\theta \in \omega_0$)= α . (Note: If H₀ holds, Λ =1. If H_A holds, Λ <1, small). Use this to <u>construct</u> the test, i.e. find rejection regions in terms of simple statistics (similar to N-P lemma).

5

Example: Consider a random sample from a normal distribution with unknown mean and unknown variance.

STAT 703/J703 B.Habing Univ. of SC

<u>Theorem A pg.310</u>: Under smoothness conditions on the pdf, the <u>null distribution</u> of $-2\ln\Lambda$ has an approximate chi-square distribution with d.f.=dim Ω -dim ω_0 for large n.

 $N(\mu,\sigma^2)$, both unknown \Rightarrow df = 2-1 = 1.

STAT 703/J703 B.Habing Univ. of SC

9.4 The Duality of Confidence Intervals and Hypothesis Tests

There is a duality between confidence intervals and hypothesis tests. A confidence interval is found by "inverting" a two-sided test (and vice-versa).

8

STAT 703/J703 B.Habing Univ. of SC

<u>Theorem A, pg. 307:</u> Suppose there is a test of level α for H₀: $\theta = \theta_0$, and let A(θ_0)=acceptance region

Then the set C={ θ : $\underline{X} \in A(\theta)$ } is a 100(1- α)% confidence region for θ .

<u>Theorem B, pg. 307:</u> Let $C(\underline{X})$ be a 100(1- α)% confidence region for θ_{0} .

Then A(θ_0)={X: $\theta_0 \in C(X)$ } is an acceptance region for a test of level α for H₀: θ = θ_0

10

11

STAT 703/J703 B.Habing Univ. of SC

Example cont.: Again, consider the random sample from a normal distribution with unknown mean and unknown variance.

STAT 703/J703 B.Habing Univ. of SC