

Example 1: Consider a sample of size 1 from a normal distribution with variance 1.

Test H₀: μ =0 vs. H_A: μ =1 at α =0.05.

<u>Example 2:</u> Consider a sample of size 1 from a normal distribution with variance 1.

Test $H_0:\mu \le 0$ vs. $H_A:\mu > 0$ at $\alpha = 0.05$.

STAT 703/J703 B.Habing Univ. of SC

For a composite test the significance level α is the maximum (supremum) of the probabilities of a Type I error over all the possible alternatives.

STAT 703/J703 B.Habing Univ. of SC

9.3 The Neyman-Pearson Lemma:

Typically, there are several possible tests of H_0 vs. H_A for a given level of significance α . How do we select the "best" (in what sense) to use?

<u>"Best" test</u>: A test which has the correct significance level α and is as, or more, powerful (1-β is greater) than <u>any</u> other test with the same significance level α . The Neyman-Pearson theory shows that a "best" test exists for simple H_0 vs. simple H_A and is based on the ratio of the likelikhood functions and on the two hypotheses, i.e. $f_0(\underline{x}) = lik(H_0), f_A(\underline{x}) = lik(H_A),$ where lik(H) is the likelihood function when H is true.

STAT 703/J703 B.Habing Univ. of SC

$$\begin{split} \lambda &= \frac{f_0(\underline{x})}{f_A(\underline{x})},\\ \text{The likelihood ratio,} \quad \lambda &= \frac{f_0(\underline{x})}{f_A(\underline{x})},\\ \text{gives the "relative plausibilities" of }\\ \text{H}_0 \text{ and } \text{H}_A. \end{split}$$
 Reject H₀ if the likelihood ratio λ is small, $\lambda \leq c$, where c is chosen to give significance level $\alpha. \end{split}$

<u>Neyman-Pearson Lemma</u>: If the likelihood ratio test that rejects H_0 in favor of H_A when

 $\lambda = \frac{f_0(\underline{x})}{f_A(\underline{x})} \le c,$ has significance level α ,

then <u>any other</u> test having significance level at most α has power <u>less than or</u> <u>equal</u> to the power of the likelihood ratio test. (I.e., the LRT has <u>highest power</u> <u>among tests</u> with significance level α). Example: Consider a sample of size n from a normal distribution with variance 1.

Test $H_0:\mu=0$ vs. $H_A:\mu=1$ at $\alpha=0.05$.

10

11

12

STAT 703/J703 B.Habing Univ. of SC

In some cases we can also show that the test is <u>uniformly most powerful</u> for a composite alternate hypotheses.

This happens if we can show it is most powerful for *every* simple alternate in H_A .

STAT 703/J703 B.Habing Univ. of SC

Consider testing Test H₀:µ=0 vs. H_A:µ>0

and

Test H₀:µ=0 vs. H_A:µ≠0