
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Example 2: Consider a sample of size 1 from a normal distribution with variance 1 .

Test $\mathrm{H}_{0}: \mu \leq 0$ vs. $\mathrm{H}_{\mathrm{A}}: \mu>0$ at $\alpha=0.05$.

For a composite test the significance
\qquad level α is the maximum (supremum) of the probabilities of a Type I error over all the possible
\qquad alternatives.
\qquad
9.3 The Neyman-Pearson Lemma: \qquad
Typically, there are several possible tests of H_{0} vs. H_{A} for a given level \qquad of significance α. How do we select the "best" (in what sense) to \qquad use?
"Best" test: A test which has the correct significance level α and is
\qquad
\qquad greater) than any other test with the same significance level α.
STAT 703/J703 B.Habing Univ. of SC
\qquad
\qquad

The Neyman-Pearson theory shows that a "best" test exists for simple H_{0} vs. simple H_{A} and is based on the ratio of the likelikhood functions and on the two hypotheses, i.e. $\mathrm{f}_{0}(\underline{\mathrm{x}})=\operatorname{lik}\left(\mathrm{H}_{0}\right), \quad \mathrm{f}_{\mathrm{A}}(\underline{\mathrm{x}})=\operatorname{lik}\left(\mathrm{H}_{\mathrm{A}}\right)$, where $\operatorname{lik}(H)$ is the likelihood function when H is true.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

The likelihood ratio, $\lambda=\frac{f_{0}(\underline{x})}{f_{A}(\underline{x})}$, gives the "relative plausibilities" of H_{0} and H_{A}. \qquad

Reject H_{0} if the likelihood ratio λ is
\qquad small, $\lambda \leq \mathrm{c}$, where c is chosen to give significance level α.
\qquad

Neyman-Pearson Lemma: If the
likelihood ratio test that rejects H_{0} in favor of H_{A} when \qquad
$\lambda=\frac{f_{0}(\underline{x})}{f_{A}(\underline{x})} \leq c, \quad$ has significance level α,
then any other test having significance \qquad level at most α has power less than or equal to the power of the likelihood ratio \qquad test. (I.e., the LRT has highest power among tests with significance level α). \qquad

STAT 703//703 B.Habing Univ. of SC \qquad

Example: Consider a sample of size n from a normal distribution with variance 1.

Test $\mathrm{H}_{0}: \mu=0$ vs. $\mathrm{H}_{\mathrm{A}}: \mu=1$ at $\alpha=0.05$.

In some cases we can also show that the test is uniformly most powerful for a composite alternate hypotheses.

This happens if we can show it is most powerful for every simple alternate in H_{A}.

Consider testing
Test $\mathrm{H}_{0}: \mu=0$ vs. $\mathrm{H}_{\mathrm{A}}: \mu>0$
and

Test $\mathrm{H}_{0}: \mu=0$ vs. $\mathrm{H}_{\mathrm{A}}: \mu \neq 0$

STAT 703/J703 B.Habing Univ. of SC
\qquad

