
\qquad
\qquad
\qquad

Today	
- Basics of Hypothesis Testing Continued	
	2

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

9.2 Neyman-Pearson Paradigm

Let $\underline{X}=\left(X_{1}, \ldots, X_{n}\right)$ denote a sample from population $f(x \mid \theta)$.
Decide on H_{0} vs. H_{A} based on the sample.
A decision on whether or not to reject
\qquad H_{0} in favor of H_{A} is made on the basis of a statistic

$$
T=T(\underline{X})=T\left(X_{1}, \ldots, X_{n}\right) .
$$

The set of values of T for which H_{0} is accepted is called the acceptance region and the set of values of T for which H_{0} is rejected is the rejection region of the test.

Two kinds of error may occur:

1. H_{0} is rejected when it is true: Type I error.
P (type I error) $=\alpha$ $=P\left(T \in\right.$ rejection region | H_{0} true $)$.

If H_{0} is simple, α is called the significance level of the test.

STAT 703//703 B.Habing Univ. of SC
will h^{4}
${ }^{5}$
2. H_{0} is accepted when it is false: Type II error.
$P($ type II error $)=\beta$
$=P\left(T\right.$ in acceptance region $\mid \mathrm{H}_{0}$ false $)$
If H_{A} is composite, β depends on which member of H_{A} is the true pdf.

2. H_{0} is accepted when it is false: Type II error. $\mathrm{P}($ type II error $)=\beta$ $=\mathrm{P}\left(\mathrm{T}\right.$ in acceptance region \| H_{0} false $)$ If H_{A} is composite, β depends on which member of H_{A} is the true pdf. star

\qquad

```
Power of the test =P(H
    when false)
    =1-P(H0}\mathrm{ is accepted | H}\mp@subsup{H}{0}{}\mathrm{ false )
    = 1- }\beta\mathrm{ .
```

Ideally, we would want $\alpha=\beta=0$, but
this not possible since the decision is based on data.

Example:

Consider testing
$\mathrm{H}_{0}: \mathrm{p}=0.5$
vs. $H_{A}: p=0.6$
for a binomial sample of size $\mathrm{n}=10$.
\qquad
P-value The p-value is the probability of observing a test statistic at least as extreme as the one observed if the null hypothesis \qquad is true.

The null hypothesis is rejected when \qquad p -value is $\leq \alpha$. It is the smallest α for which H_{0} would be rejected. \qquad

STAT 703//703 B.Habing Univ. of SC \qquad

Example 2:

Consider testing

$H_{0}: p=0.5$
vs. $H_{A}: p>0.5$
for a binomial sample of size $\mathrm{n}=10$.

For a composite test the significance level α is the maximum (supremum) of the probabilities of a Type I error over all the possible alternatives.
\qquad

