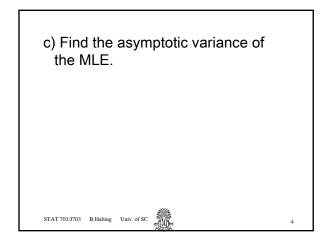


<u>Ch.8#5</u> Suppose that X follows a geometric distribution, *P*[*X* = *k*] = *p*(1−*p*)^{*k*−1}
And assume an i.i.d. sample of size *n*.
b) Find the mle of *p*.



	0.400 0		
<u>Ch.8#6</u> Consider the data			
<u># Hops Freq</u>		<u># Hop</u>	<u>s Freq</u>
1	48	7	4
2	31	8	2
3	20	9	1
4	9	10	1
5	6	11	2
6	5	12	1
STAT 703	J703 B.Habing Univ. of S	c Min	5

a) Fit a geometric distribution

b) Find an approximate 95% confidence interval for p.

6

STAT 703/J703 B.Habing Univ. of SC

 $\frac{Ch8\#44c}{variables} \text{ Let } X_1, \dots X_n \text{ be i.i.d random}$ variables with density function

 $f(x \mid \theta) = (\theta + 1)x^{\theta}, 0 \le x \le 1$

Find the asymptotic variance of the MLE.

STAT 703/J703 B.Habing Univ. of SC

<u>Statistical Inference – Confidence</u> Intervals and Tests of Hypotheses

Test of hypothesis – general method to distinguish between 2 (or more) probability distributions (or models), based on a sample X₁, ..., X_n assumed to come from one of them.

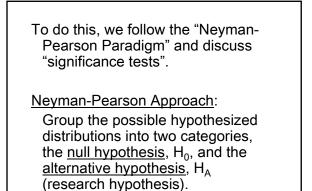
8

STAT 703/J703 B.Habing Univ. of SC

In particular, based on $X_1, ..., X_n$, decide whether $f_1(x)$ or $f_2(x)$ is the pdf (or population) from which the sample came.

<u>More specifically</u>, suppose we think the sample is from a normal population with mean either μ =5 or μ =10 with variance 4. (Or, more generally, μ = μ ₁ vs. μ = μ ₂).

STAT 703/J703 B.Habing Univ. of SC



10

11

12

STAT 703/J703 B.Habing Univ. of SC

E.g. Observe X₁, ..., X_n. Either H₀: N(μ_1 , σ^2) or H_A: N(μ_2 , σ^2) or H₀: μ = μ_1 vs. H_A: μ = μ_2 , μ is the mean of N(μ , σ^2). Here, if σ^2 is known, each of these hypotheses <u>completely</u> specifies

the distribution or population. So, H₀ and H_A are called <u>simple</u> <u>hypotheses</u>.

STAT 703/J703 B.Habing Univ. of SC

If H_0 : μ =0 vs. H_A : μ > 0 (μ in N(μ , σ^2), with σ^2 known).

Then H₀ is simple and H_A is a <u>composite hypothesis</u>, i.e. several normal distributions would satisfy it.

 H_A is also referred to as a <u>one-sided</u> hypothesis.

If H₀: μ =0 vs. H_A: μ ≠0 (μ in N(μ , σ ²), σ ² known), then H_A is a <u>two-sided</u> (composite) hypothesis.

Next, we set up the framework for "testing" H_0 and H_A based on the sample.

13

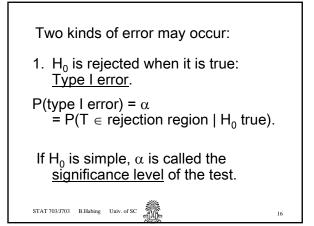
15

STAT 703/J703 B.Habing Univ. of SC

9.2 Neyman-Pearson Paradigm Let $\underline{X} = (X_1, ..., X_n)$ denote a sample from population $f(X|\theta)$. Decide on H_0 vs. H_A based on the sample. A decision on whether or not to reject H_0 in favor of H_A is made on the basis of a statistic $T=T(\underline{X})=T(X_1, ..., X_n)$.

The set of values of T for which H_0 is accepted is called the <u>acceptance region</u> and the set of values of T for which H_0 is rejected is the <u>rejection region of the test</u>.

STAT 703/J703 B.Habing Univ. of SC



2. H₀ is accepted when it is false: <u>Type II error</u>.
P(type II error) = β
= P(T in acceptance region | H₀ false)
If H_A is composite, β depends on which member of H_A is the true pdf.

STAT 703/J703 B.Habing Univ. of SC

Power of the test=P(H₀ is rejected
when false)= 1 - P(H₀ is accepted | H₀ false)= 1 - β.Ideally, we would want α=β=0, but
this not possible since the decision
is based on data.

17