STAT 703/J703 February 1st, 2005

-Lecture 7-

Instructor: Brian Habing Department of Statistics LeConte 203

Telephone: 803-777-3578 E-mail: habing@stat.sc.edu

STAT 703/J703 B.Habing Univ. of SC

Today

- Consistency of the MLE
- Information Function
- · Asymptotic Normality of the MLE

STAT 703/J703 B.Habing Univ. of SC

8.5.2 – Large Sample Properties

Theorem A: The MLE is Consistent (under appropriate regularity conditions)

Sketch of Proof: Consider

maximizing
$$\frac{1}{n}L(\theta) = \frac{1}{n}\sum_{i=1}^{n}\log f(X_i \mid \theta)$$

STAT 703/J703 B.Habing Univ. of SC

Information function

$$I(\theta) = E \left[\left(\frac{\partial}{\partial \theta} \log f(X \mid \theta) \right)^{2} \right]$$

$$= -E \left[\frac{\partial^2}{\partial \theta^2} \log f(X \mid \theta) \right]$$

STAT 703/J703 B.Habing Univ. of SC

Example: Consider a random sample of size n from a normal distribution with unknown mean θ and known variance σ^2 .

STAT 703/J703 B.Habing Univ. of SC

What if there is more than one parameter?

In this case you get an information

$$I(\theta) = E \left[\left(\frac{\partial}{\partial \theta_i} \log f(X \mid \theta) \right) \left(\frac{\partial}{\partial \theta_j} \log f(X \mid \theta) \right) \right]$$
$$= -E \left[\frac{\partial^2}{\partial \theta_i \partial \theta_j} \log f(X \mid \theta) \right]$$

STAT 703/J703 B.Habing Univ. of SC

Theorem B: Under appropriate regularity conditions the MLE is asymptotically normal with mean θ and variance $\frac{1}{nI(\theta)}$.	
STAT 703/J703 B.Habing Univ. of SC 7	
Sketch of proof: Consider the Taylor series expansion: $L'(\hat{\theta}) \approx L'(\hat{\theta}) + (\hat{\theta} - \theta)L''(\hat{\theta})$	
STAT 703J703 B.Habing Univ. of SC 8	
Example: Recall the multinomial example from section 8.5.1.	

STAT 703/J703 B.Habing Univ. of SC