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-Lecture 4-

Instructor:  Brian Habing
Department of Statistics

LeConte 203
Telephone:  803-777-3578
E-mail: habing@stat.sc.edu
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Today

Sect 8.4:  Method of Moments (cont).
• The Parametric Bootstrap
• Consistency

Sect 8.5:  Maximum Likelihood
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Given a MoM estimate, we still need 
to investigate its sampling 
distribution.

We can use the statistic to generate 
“new” bootstrap samples. 

And then we can calculate the MoM 
estimator for each one of these.  
The set of these is the bootstrap 
distribution.
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Ideally, the relationship between the 
statistic and bootstrap distribution
should approximate the relationship 
between the parameter and the 
sampling distribution.
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hist(lhat.dist,nclass=50,
xlim=c(0,25))

lines(c(mean(lhat.dist), 
mean(lhat.dist)),          
c(-1000,30000),lwd=4,lty=5)

text(12,18000,"Bootstrap Mean")
lines(c(lhat,lhat),c(-
1000,30000),lwd=4)

text(3,18000,"Original Est.")
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The MoM estimates do not 
necessarily correspond to a 
distribution that is likely to have 
produced them!!!!

Besides simplicity, there is another 
good property of MoM estimates 
however.
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Definition: Let       be an estimate of 
θ for a sample of size n.        Is 
said to be a consistent estimator of 
θ if it converges to θ in probability.

That is, if for any ε>0,

nθ̂
nθ̂

∞→→>− nP n  as  0)|ˆ(| εθθ
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8.5 – Maximum Likelihood

The idea behind maximum likelihood 
estimation is to find the parameters 
that seem most likely to have 
resulted in the observed statistic.
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In the case of more than one 
observation, the likelihood is:

lik(θ|x1,…xn)=f (x1,…xn|θ)=Πf (xi|θ)

It is unpleasant to find the maximum 
of a product though…
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An easier function to work with is the 
log likelihood

L(q)=log(lik(θ))
=log(Πf (xi|θ))
=Σlog(f (xi|θ))
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Consider a sample from a Poisson 
distribution….
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Unlike the Poisson distribution, a  
Gamma distribution has two 
parameters to deal with…
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ngamloglike<-function(pars,data){
a<-pars[1] 
l<-pars[2] 
n<-length(data) 
-1*
(n*a*log(l)+(a1)*sum(log(data))-
l*sum(data)-n*lgamma(a)) 
}

optim(c(6,6),neggloglike,data=a)
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