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Instructor:  Brian Habing
Department of Statistics

LeConte 203
Telephone:  803-777-3578
E-mail: habing@stat.sc.edu
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Today

Section 8.4:  Method of Moments
• Estimating α and λ for the Gamma
• Q-Q plots
• The Parametric Bootstrap
• Consistency
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A sampling distribution is the 
probability distribution of a statistic.

In general we want a sampling 
distribution that is as close as 
possible to the corresponding 
parameter.
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8.4 – Method of Moments (cont.)

Use a number of moments equal to 
the number of parameters that 
need to be estimated, and set the 
sample moments equal to the 
distribution’s moments.
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Recall that…

µ1 = E(X) = µ

µ2 = E(X2) = Var(X)+(E(X))2 =σ2 + µ2
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Consider a Gamma distribution 
where:

µ = α/λ
σ2 = α/λ2
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Example:  Discrimination parameters 
for a law school admissions test.
0.52208 0.61226 0.61651 
0.67259 0.68124 0.70027 
0.79531 0.80179 0.85638 
0.87090 0.88407 0.90651 
0.95291 0.99212 1.08418 
1.09365 1.23861 1.36625 
1.36719 1.57871 1.61840 
1.67781 1.77927 2.02504
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> hist(a)

> mean(a)
[1] 1.070585

> (n-1)/n*var(a)
[1] 0.1691372
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Question 1: Does the gamma with 
these parameters seem to match 
our data?

A quantile-quantile plot of our data 
against F-1(i/(n+1)) could be used to 
see.
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xbar<-mean(a)
sigma2hat<-(n-1)/n*var(a)
lhat<-xbar/sigma2hat
ahat<-xbar^2/sigma2hat
n<-length(a)

plot(sort(a),qgamma((1:n)/(n+1),  
shape=ahat,rate=lhat))

lines(qgamma((1:n)/(n+1),shape=ahat, 
rate=lhat),qgamma((1:n)/(n+1), 
shape=ahat,rate=lhat))
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Say we repeated the plot with
a<-rnorm(24,1.07,sqrt(.1677))



5

STAT 702/J702     B.Habing      Univ. of S.C. 13

Question 2: How accurate are the 
estimates?

If we had the actual α and λ we could 
get a large number of samples of 
size 24 from that distribution and 
calculate the estimates for each 
one. 
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Since we don’t have the true α and λ 
the best we can do is to use the 
estimates instead.

This is called a parametric bootstrap.
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nsamples<-100000
x<-
rgamma(n*nsamples,shape=ahat,
rate=lhat)

x<-matrix(x,ncol=n)
xbar.dist<-apply(x,1,mean)
s2h.dist<-
(n-1)/n*apply(x,1,var)

lhat.dist<-xbar.dist/s2h.dist
ahat.dist<-xbar.dist^2/s2h.dist
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Unfortunately we generally have no 
way of knowing exactly how well 
the method of moment estimators 
will behave in general.

We do, however, know that they are 
consistent.
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Definition: Let       be an estimate of 
θ for a sample of size n.        Is 
said to be a consistent estimator of 
θ if it converges to θ in probability.

That is, if for any ε>0,

nθ̂
nθ̂

∞→→>− nP n  as  0)|ˆ(| εθθ


