Solutions to the Practice Problems for MoM and Maximum Likelihood

1) Consider a random sample X, ... X, from a distribution with pdf

f(X)=(@+1)(1-x)? for 0<x<l
a) Find the MoM estimator for 6.
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Or, notice that this is a beta distribution with =1 and f=6+1.
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b) Find the MLE estimator for 6.
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2) In many cases a process will have a minimum value > 0 so that using a distribution like the exponential, chi-
squared, F, or gamma doesn’t make much sense. In this case the distribution can be shifted to the right.
Consider the shifted exponential with pdf

—(x-a)

f(x)= %e A for x>a
and the data set 16.2,12.4, 6.0, 8.4, 6.8, 9.1, 6.6, 6.0, 10.7, 5.8.

a) Show that the mean of the shifted exponential is #+a and the variance is &.
0 CI | —(x—ay
U= j xf(x)dx = | Xge ?dx let y=x-a so that x=y+a and dx=dy and we get

= j(y+a) e /dy a+ jy e /dy a+ 6 because y is just exponential.

X=a

T(X (@ +a))* f(x)dx = j(x (0+a)) h a/dx again let y=x-a

= j(x (0 +a))* f(x)dx = j(y 6) /dy 0? because y is again just exponential.

b) Find the form of the MoM estimators for a and 6.

In this case we get émom =0 =3.242 and &,,, =X—-0 =8.8-3.242 =5.558

c¢) Find the form of the MLE for a and 6. (Note that when you take the derivative with respect to a that it can
never equal zero, so the maximum must happen at one of the end-points. Also note that the bigger a is the
bigger the log-likelihood is. Based on what you know about the pdf, what is the biggest value that a can have?)
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ailog lik(a,8] X,,..X,) = g which is never 0! So must be a boundary. The biggest it can be is the smallest observed X!
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So we get that &, = X;, and 0. =X — X, which in this case are d,, = 5.8 and 0., =88-58=3
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3) Consider the Cauchy distribution centered at 6, that has pdf

f(x)= ! for -co<x<oo

)_72(1+(X—6’)2)

a) Why can’t there be a MoM estimator for 67?
The Cauchy distribution doesn’t have any moments!

b) What formula must the MLE satisfy?
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c¢) Use R to find the estimate of & based on the sample 0.6, 4.2, 1.1, -4.3, -10.3, 1.6, 4.8, 30.9, 0.4, 1.5.
x<-c(-0.6, 4.2, 1.1, -4.3, -10.3, 1.6, 4.8, 30.9, 0.4, 1.5)
cauchynl ogl i k<-function(theta, dat a){

n<-| engt h(dat a)

x<-data

-(-n*log(pi)-sun(log(1l+(x-theta)"2)))}

opti m( 0, cauchynl ogl i k, met hod="BFGS”, dat a=x)

$par
[1] 1.171398



