
Solutions to the Practice Problems for MoM and Maximum Likelihood 
 
1) Consider a random sample x1, … xn from a distribution with pdf 

θθ )1)(1()( xxf −+=   for  0<x<1 
a) Find the MoM estimator for θ. 
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Or, notice that this is a beta distribution with α=1 and β=θ+1. 
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b) Find the MLE estimator for θ. 
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2) In many cases a process will have a minimum value > 0 so that using a distribution like the exponential, chi-
squared, F, or gamma doesn’t make much sense.  In this case the distribution can be shifted to the right.  
Consider the shifted exponential with pdf 

θ

θ

)(1)(
ax

exf
−−

=   for  x>a 

and the data set   16.2,12.4, 6.0, 8.4, 6.8, 9.1, 6.6, 6.0, 10.7, 5.8. 
 
a) Show that the mean of the shifted exponential is θ+a and the variance is θ2. 
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 because y is just exponential. 
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b) Find the form of the MoM estimators for a and θ. 
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In this case we get 242.3ˆˆ == σθmom  and 558.5242.38.8ˆˆ =−=−= σxamom  
 
c) Find the form of the MLE for a and θ.   (Note that when you take the derivative with respect to a that it can 
never equal zero, so the maximum must happen at one of the end-points.  Also note that the bigger a is the 
bigger the log-likelihood is.  Based on what you know about the pdf, what is the biggest value that a can have?) 
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3) Consider the Cauchy distribution centered at θ, that has pdf 
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a) Why can’t there be a MoM estimator for θ ? 
 
The Cauchy distribution doesn’t have any moments! 
 
b) What formula must the MLE satisfy? 
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c) Use R to find the estimate of θ  based on the sample –0.6, 4.2, 1.1, -4.3, -10.3, 1.6, 4.8, 30.9, 0.4, 1.5. 
 
x<-c(–0.6, 4.2, 1.1, -4.3, -10.3, 1.6, 4.8, 30.9, 0.4, 1.5) 
 
cauchynloglik<-function(theta,data){ 
   n<-length(data) 
   x<-data 
   -(-n*log(pi)-sum(log(1+(x-theta)^2)))} 
 
optim(0,cauchynloglik,method=”BFGS”,data=x) 
 
$par 
[1] 1.171398 


