
STAT 703/J703 – Spring 2005 - Take Home Exam 2 
Due by Noon, Tuesday, March 29th 
 
Answer 10 of the 11 following questions (I will grade your best 10).  Show all of your work for credit. 
There are no “trick” questions. 
The answers to questions 2 to 4 depend on your answer to question 1.   
The answer to question 7 depends on your answer to question 6. 
 
 
 
Many processes are observed only once a day to see if a certain event occurred.   For example, did your car fail 
to start the first time it was tried in the morning, did the computer network crash sometime over night, etc… 
One way of estimating p=chance of failure per day would be observe a single process, assume it was a binomial 
experiment, and observe what day it fails on first. 
 
1) Find the likelihood ratio test of H0: p=0.3 vs. HA: p=0.2 that has α as close to 0.05 as possible without 
exceeding it.   Specify the statistic you are using, the rejection region, and the actual α-level.   (Hint: 
help(dgeom)) 
 
2) According to the test in (1), if the first observed failure occurs on day 7 what is the p-value?  
 
3) Find the power of the test in (1) if p=0.2. 
 
4) Verify or not the test you found in (1) is UMP for HA: p<0.3 . 
 
5) Someone could complain that we might have to wait a long time after the experiment is started before we can 
even conduct the test.  This is because the day of the first failure can be any integer greater than zero (1, 2, 3, 
…1000, 1001, …).  Why isn’t this really a problem? 
 
 
 
 
On page 267 a formula for the 100(1-α)% confidence interval for σ2 for a random sample from a normal 
population is given as: 
    

 
 
where 2σ̂  is the MLE for the variance and 2

,1 αχ −=ndf is the upper αth percentile point for a chi-squared 
distribution with n-1 degrees of freedom. 
 
 
6) Use the above formula to say how you would test H0: σ2= σ0

2 vs. HA: σ2≠ σ0
2. 

 
 
7) Test H0: σ2= 2  vs. HA: σ2≠ 2 for the following sample that is from a normal distribution. 

2.26  1.40  -0.64 0.31  2.88 
0.65  0.00   4.37    -0.81  1.56 
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We saw in Lecture 6 that the likelihood for logistic regression could be written as: 
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where x is the independent/predictor variable, y is the 0-1 dependent/response variable, α is the location 
parameter for the logistic curve, and β is the slope parameter.  One way of estimating a and b would be to use 
the R-code at http://www.stat.sc.edu/~habing/courses/702rF04.html#703l6 . 
 
In addition to estimating the shape of the curve we might want to actually test whether there is a non-zero 
relationship by testing H0: β= 0 vs. HA: β ≠ 0. 
 
8) Briefly explain why we can’t simply use the Neyman-Pearson Lemma to conduct this test and need to use the 
generalized likelihood ratio test. 
 
9) When constructing the Λ for the generalized likelihood ratio test, we need to get values for both the 
numerator and denominator.  Which one of those (the numerator or denominator) can we get simply by 
plugging the MLEs from the current computer code into the formula given above?   Briefly say what would 
need to be changed in the computer code to get the other.  (You don’t actually need to change the code or try it 
out, just say what you would change). 
 
10) How would we use the Λ to test the hypothesis at the α=0.05 level?    (e.g. How do we transform Λ, what 
distribution do we need to look up the critical region in, what is/are its degrees of freedom, and what is the cut-
off value). 
 
 
 
11) A random sample of size 40 supposedly comes from a geometric distribution with p=0.4.  Zero was 
observed twelve times, 1 eight times, 2 six times, 3, 4, 5, and 6 one time each.   Use the likelihood ratio test for 
contingency tables to test the null hypothesis that the data does indeed come from the specified distribution at 
the α=0.05 level.  (You may ignore the issue of some cells possibly being two small).   
 
 
 


