Homework 12 - Problem \#2

Let X and Y be independent uniform [0,1] random variables.
Consider the (seemingly ugly) transformations:
$U=\sqrt{-2 \ln (X)} \cos (2 \pi Y)$
$V=\sqrt{-2 \ln (X)} \sin (2 \pi Y)$
a) Demonstrate that:
$X=\exp \left(-\frac{U^{2}+V^{2}}{2}\right)$
$Y=\frac{1}{2 \pi} \arctan \frac{V}{U}$
b) Use the transformation of variable formula to find the joint distribution of U and V, and remember to specify where it is defined.
c) Identify the joint distribution by name.

Hints - Some relevant reminders from Trigonometry and Calculus

$\sin ^{2} \theta+\cos ^{2} \theta=1$
$\frac{\sin \theta}{\cos \theta}=\tan \theta$
$\frac{d}{d u} \arctan u=\frac{1}{1+u^{2}} d u$
and remember the chain rule!!

