
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad

Ch 4 \# 67) A fair coin is tossed n times, and the number of heads, N, is counted. The coin is then tossed N more times. Find the expected total number of heads generated by
\qquad this process. \qquad
\qquad
\qquad
\qquad

Question 2: Use R and Monte Carlo Integration (but not the built in normal pdf or cdf) with $n=1000$ to estimate $P(0<Z<1)$ (as discussed in
\qquad example A on page 165). Report the code you used and the results of 10 of your simulations. Compare your finding to the actual value.
\qquad

Central Limit Theorem: Let X_{1}, X_{2}, \ldots be a sequence of independent identically distributed random variables with mean μ and variance σ^{2}. Then

$$
\lim _{n \rightarrow \infty} P\left(\frac{\sum_{i=1}^{n} X_{i}-n \mu}{\sqrt{n} \sigma} \leq x\right)=\Phi(x)
$$

STAT 702/J702 B.Habing Univ. of S.C.
\qquad
\qquad
\qquad
\qquad
\qquad

$$
-\infty<x<\infty
$$

\qquad
\qquad

Similarly:
$\lim _{n \rightarrow \infty} P\left(\frac{\bar{X}-\mu}{\sigma / \sqrt{n}} \leq x\right)=\Phi(x)$
$-\infty<x<\infty$
\qquad

