STAT 702/J702
November 11 ${ }^{\text {th }}, 2004$
-Lecture 23-

Instructor: Brian Habing
Department of Statistics
Telephone: 803-777-3578
E-mail: habing@stat.sc.edu

STAT 702/J702 B.Habing Univ. of S.C.
mind ${ }^{2 n}$

Today

- Application 2: Intelligent Searches and Sampling
- Application 3: Random Sums

Consider the case of splitting each of n samples in half. Combine half of each one is placed into a large combined pool.

Should this work better?
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
b) Stratified Sampling

Imagine that a population is natually divided into n groups or strata.

What happens if you randomly sample from each stratum separately than it is to take a single random sampling?

STAT 702/J702 B.Habing Univ. of S.C

${ }^{6}$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Random Sums
An insurance company receives N independent claims $X_{1}, \ldots . X_{N}$ in a given time period. Where N is also a random variable (independent of the X_{i}).
What are the mean and variance of $T=\sum_{i=1}^{N} X_{i}$

This would be much easier to work with if we could condition on N and consider $T \mid N$.

$$
\begin{aligned}
E(T \mid N=n) & =E\left(\sum_{i=1}^{N} X_{i} \mid N=n\right) \\
& =E\left(\sum_{i=1}^{n} X_{i}\right) \\
& =\sum_{i=1}^{n} E\left(X_{i}\right)=n E(X)
\end{aligned}
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

The general result is	
$\mathrm{E}(\mathrm{Y})=\mathrm{E}_{\mathrm{X}}\left[\mathrm{E}_{Y \mid X}(Y \mid X)\right]$	
A similar result is	
$\operatorname{Var}(\mathrm{Y})=\operatorname{Var}[\mathrm{E}(\mathrm{Y} \mid \mathrm{X})]+\mathrm{E}[\operatorname{Var}(\mathrm{Y} \mid \mathrm{X})]$	
	${ }^{13}$

