STAT 702/J702

November 4 ${ }^{\text {th }}, 2004$
-Lecture 21-

Instructor: Brian Habing
Department of Statistics
Telephone: 803-777-3578
E-mail: habing@stat.sc.edu

STAT 702/J702 B.Habing Univ. of S.C

1

Today

- Exam 2
- Moment Generating Functions continued

Exam 2 \#1) Let X and Y be independent random variables where X is exponential with $\lambda=2$ and Y is normal with $\mu=4$ and $\sigma=6$. Find $E(X+Y)$ and $\operatorname{Var}(X+Y)$.

\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
4) Leaks due to manufacturing defects occur in a brand of hose at a rate of approximately 1 per 500 feet. Name an appropriate distribution and estimate the probability that the first defect will \qquad be found in the first 100 feet.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
6) Let X have a uniform distribution
\qquad on ($-\pi / 2, \pi / 2$). Find the c.d.f. and p.d.f. of $Y=\tan X$.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
8) Let X and Y be independent chisquare random variables with 1 degree of freedom. (The p.d.f. is on page 59.) Derive the p.d.f. of $Z=X / Y$.

\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
11) Let $X_{1}, \ldots X_{11}$ be independent exponential random variables with parameter $\lambda=1$. Find the p.d.f. for the median $X_{(6)}$.

4.5 - Moment Generating Functions

The moment-generating function (mgf) of X is $M(t)=\mathrm{E}\left(\mathrm{e}^{t x}\right)$
$M(t)=\sum_{x} e^{t X} p(x)$
$M(t)=\int_{-\infty}^{\infty} e^{t X} f(x) d x$

Properties of m.g.f.'s
a) If the m.g.f. exists on an interval around zero then $M^{(k)}(0)=E\left(X^{k}\right)$
b)The m.g.f. uniquely determines the p.d.f.
c) If $\mathrm{Y}=a+b \mathrm{X}$ then $\mathrm{M}_{\mathrm{Y}}(t)=\mathrm{e}^{a t} \mathrm{M}_{\mathrm{X}}(b t)$
d) If X and Y are independent and
$\mathrm{Z}=\mathrm{X}+\mathrm{Y}$ then $\mathrm{M}_{\mathrm{Z}}(t)=\mathrm{M}_{\mathrm{X}}(t) \mathrm{M}_{\mathrm{Y}}(t)$

