

Problem 2) Assume a sample of size 30 is supposed to have come from a standard normal distribution. What is the 99th-\%ile for the 30th order statistic?
\qquad

Chapter 4 Revisited:
More on Expected Values

For constants a and b,
$\mathrm{E}(a+b \mathrm{X})=a+b \mathrm{E}(x)$
$\operatorname{Var}(a+b X)=b^{2} \operatorname{Var}(X)$

STAT 702/J702 B.Habing Univ. of S.C.
nel

Let $X_{1}, X_{2}, \ldots X_{n}$ be mutually independent random variables, \qquad then:
$\mu_{\Sigma \mathrm{X}}=\mathrm{E}\left(\Sigma_{\mathrm{i}} \mathrm{X}_{\mathrm{i}}\right)=\Sigma_{\mathrm{i}} \mathrm{E}\left(\mathrm{X}_{\mathrm{i}}\right)=\Sigma \mu_{\mathrm{Xi}}$
$\sigma_{\Sigma X}{ }^{2}=\operatorname{Var}\left(\Sigma_{i} X_{i}\right)=\Sigma_{\mathrm{i}} \operatorname{Var}\left(\mathrm{X}_{\mathrm{i}}\right)=\Sigma \sigma_{\mathrm{Xi}}{ }^{2}$
\qquad

What if the X_{i} are not independent?

First, if the X_{i} have joint p.d.f
$f\left(x_{1}, \ldots x_{\mathrm{n}}\right)$ and $\mathrm{Y}=g\left(x_{1}, \ldots x_{\mathrm{n}}\right)$ then
$E(Y)=\int \cdots \int g\left(x_{1}, \ldots x_{n}\right) f\left(x_{1}, \ldots x_{n}\right) d x_{1} \cdots d x_{n}$
Provided the integral converges with $|g|$.
\qquad
\qquad
\qquad
and finding $E(Y)$ and $\operatorname{Var}(Y)$.
\qquad

$$
\frac{\text { Correlation }}{\operatorname{Cor}(X, Y)=\rho_{X Y}=\frac{\operatorname{Cov}(X, Y)}{\sqrt{\operatorname{Var}(X) \operatorname{Var}(Y)}}, \text {. }}
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

4.5-Moment Generating Functions

The moment-generating function (mgf) of X is $M(t)=\mathrm{E}\left(\mathrm{e}^{t x}\right)$

$$
\begin{aligned}
M(t) & =\sum_{x} e^{t X} p(x) \\
M(t) & =\int_{-\infty}^{\infty} e^{t X} f(x) d x
\end{aligned}
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Why "moment generating" ? \qquad
Assume the mgf exists on some \qquad interval around 0...

$$
\begin{aligned}
& M(t)=\int_{-\infty}^{\infty} e^{t X} f(x) d x \\
& M^{\prime}(t)=\frac{d}{d t} \int_{-\infty}^{\infty} e^{t X} f(x) d x
\end{aligned}
$$

Other properties:

a) The m.g.f. uniquely determines \qquad the p.d.f.
b) If $\mathrm{Y}=a+b \mathrm{X}$ then $\mathrm{M}_{\mathrm{Y}}(t)=\mathrm{e}^{a t} \mathrm{M}_{\mathrm{X}}(b t)$
c) If X and Y are independent and $\mathrm{Z}=\mathrm{X}+\mathrm{Y}$ then $\mathrm{M}_{\mathrm{Z}}(t)=\mathrm{M}_{\mathrm{X}}(t) \mathrm{M}_{\mathrm{Y}}(t)$

