STAT 702/J702
October 26, 2004

-Lecture 19-

Instructor: Brian Habing
Department of Statistics
Telephone: 803-777-3578
E-mail: habing@stat.sc.edu
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Today

* Homework
* Order Statistics (cont.)

* More on Expected Values
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Ch 3: #38) LetT,and T, be
independent exponentials with
parameters A, and A,. Find the
density function of T, and T,.
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Problem 2) Let Xand Ybe
independent uniform [0,1] random
variables.

Consider the (seemingly ugly)
transformations:

U =,-2In(X) cos(2xY)
V =,/—2In(X)sin(2zY)
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a) Demonstrate that:

U2+v?
X = exp(—
1 \Y
Y =—arctan—
27 U
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b) Use the transformation of variable
formula to find the joint distribution
of Uand V, and remember to
specify where it is defined.

c) Identify the joint distribution by
name.
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3.7 — Order Statistics (cont.)

Let X4, X5, .... X, be independent
random variables with the same
CDF Fy(x).

The values in order from lowest to
smallest are the order statistics
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The marginal p.d.f. for any of the
order statistics is:

!
fx(k) (X)) :m fx (X))

-F k71()((|<))[:|-— Fx (X(k))]nfk
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The joint p.d.f. of all of the order statistics
is:

Py Xy Kyr-- X)) =
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One way to find the joint p.d.f. of a
pair of order statistics would be to
integrate out the n-2 you are not
concerned with.

Another way is to use what the text
calls “a differential argument”
(Theorem A on 101 uses this to
prove the result in the hmwk.)
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Say we want the joint p.d.f. of X, and X
where i<j.

The trick to getting the joint p.d.f. directly
is try to let our insights into discrete
distributions apply to continuous
random variables.

In particular we will imagine that:
f(X,y)=P[x< X <x+dx,y<Y <y+dy]
f(x)=P[x< X <x+dx]

-
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Andso... Ty x, (Xiy %) =
n!
(-D'(j-i-DY(n- !
-Fy i_l(x(i))
IFx (%j)) — Fx (X(i))]j_i_l
L= Fy (x )1
e (i) Fx (X))
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Chapter 4 Revisited:
More on Expected Values

Recall that

E(X)=Sxp(x) = [xF(x)dx

Var(X) =X (x—u)* p(X)

+o0

= [ (x=u)®f(x)dx
—o0
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For constants a and b,
E(a+bX)=a +bE(X)

Var(a +b X)= b2Var(X)
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Let X4, X,, ... X, be mutually
independent random variables,
then:

tsy = E(ZX) =ZE(X) = Zuy
oxx? = Var(ZX) = ZVar(X)) =X o2
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What if the X; are not independent?
First, if the X, have joint p.d.f
f(x,...x)) and Y=g (x;,...x,) then

ECY)=[--9(X,..-X,) T (Xq,..., )dX, - dX,,

Provided the integral converges with
lg1.
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Now consider Y =a+b} X;
i=L

and finding E(Y) and Var(Y).
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