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STAT 702/J702 
October 26th, 2004

-Lecture 19-

Instructor:  Brian Habing
Department of Statistics

Telephone:  803-777-3578
E-mail: habing@stat.sc.edu

STAT 702/J702     B.Habing      Univ. of S.C. 2

Today

• Homework

• Order Statistics (cont.)

• More on Expected Values
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Ch 3: #38)  Let T1 and T2 be 
independent exponentials with 
parameters λ1 and λ1.  Find the 
density function of T1 and T2. 
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Problem 2) Let X and Y be 
independent uniform [0,1] random 
variables.

Consider the (seemingly ugly) 
transformations:
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a) Demonstrate that:
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b) Use the transformation of variable 
formula to find the joint distribution 
of U and V, and remember to 
specify where it is defined.

c) Identify the joint distribution by 
name.
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3.7 – Order Statistics (cont.)

Let X1, X2, …. Xn be independent 
random variables with the same 
CDF FX(x ).

The values in order from lowest to 
smallest are the order statistics   
X(1), X(2), …. X(n).
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The marginal p.d.f. for any of the 
order statistics is:

kn
kXk

k

kXkX

xFxF

xf
knk

nxf
k

−− −⋅

−−
=

)](1)[(

)(
)!()!1(

!)(

)()(
1

)()()(

STAT 702/J702     B.Habing      Univ. of S.C. 9

The joint p.d.f. of all of the order statistics 
is:
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One way to find the joint p.d.f. of a 
pair of order statistics would be to 
integrate out the n -2 you are not 
concerned with.

Another way is to use what the text 
calls “a differential argument”  
(Theorem A on 101 uses this to 
prove the result in the hmwk.)
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Say we want the joint p.d.f. of X(i) and X(j)
where i<j.

The trick to getting the joint p.d.f. directly 
is try to let our insights into discrete 
distributions apply to continuous 
random variables.  

In particular we will imagine that:
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And so…
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Chapter 4 Revisited:                    
More on Expected Values

Recall that
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For constants a and b, 

E(a +b X)= a + b E(x)

Var(a +b X)= b 2 Var(X)
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Let X1, X2, … Xn be mutually 
independent random variables, 
then:

µΣX = E(ΣiXi) =ΣiE(Xi) = ΣµXi

σΣX
2 = Var(ΣiXi) = ΣiVar(Xi) =Σ σXi

2
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What if the Xi are not independent? 

First, if the Xi have joint p.d.f                   
f (x1,…xn) and Y=g (x1,…xn)  then

Provided the integral converges with 
|g |.
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Now consider

and finding E(Y) and Var(Y).
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