STAT 702/J702
October 21st, 2004
-Lecture 18-

Instructor: Brian Habing Department of Statistics
Telephone: 803-777-3578
E-mail: habing@stat.sc.edu

STAT 702/J702 B.Habing Univ. of S.C
will
1

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
3.6.1 - Special Case 1 - Convolution
\qquad
In general say $Z=X+Y$ \qquad
We can find a general formula for $\mathrm{F}_{\mathrm{Z}}(z)=\mathrm{P}(\mathrm{Z}<z)$ simply by finding the appropriate area under $f(x, y)$. \qquad
Taking the derivative then gives us the pdf.
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

3.6.1 - Special Case 2 - Quotient

\qquad
A general formula for the quotient \qquad $\mathrm{Z}=\mathrm{Y} / \mathrm{X}$ can also be derived by examining the CDF.

To do this easily, note that if $y / x \leq z$
\qquad then if $x>0$ we have $y \leq x z$ and if $x<0$ then $y \geq x z$. \qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

3.7 - Order Statistics

Let $X_{1}, X_{2}, \ldots . X_{n}$ be independent random variables with the same CDF $\mathrm{F}_{\mathrm{x}}(x)$.
The values in order from lowest to smallest are the order statistics $X_{(1)}, X_{(2)}, \ldots . X_{(n)}$.

First consider the maximum $U=X_{(n)}$. Note that $U \leq u$ if and only if all of the $X_{i} \leq u$.

$$
\begin{aligned}
& F_{U}(u)=P(U \leq u) \\
& =P\left(\left(X_{1} \leq u\right) \cap \cdots \cap\left(X_{n} \leq u\right)\right) \\
& =P\left(X_{1} \leq u\right) \cdots P\left(X_{n} \leq u\right)
\end{aligned}
$$

$$
\begin{aligned}
& =P\left(X_{1} \leq u\right) \cdots P\left(X_{n} \leq u\right) \\
& =F_{X}(u) \cdots F_{X}(u)=\left[F_{X}(u)\right]^{n}
\end{aligned}
$$

Taking the derivative we get:

$$
f_{U}(u)=n f_{X}(u)\left[F_{X}(u)\right]^{n-1}
$$

\qquad

The minimum $\mathrm{V}=\mathrm{X}_{(1)}$ works similarly:
$F_{V}(v)=1-\left[1-F_{X}(v)\right]^{n}$
$f_{V}(v)=n f_{X}(v)\left[1-F_{X}(v)\right]^{n-1}$

Similar logic helps to get the marginal p.d.f. for any of the order statistics (as you will show in the homework).
$f_{X_{(k)}}\left(x_{(k)}\right)=\frac{n!}{(k-1)!(n-k!)} f_{X}\left(x_{(k)}\right)$
$\cdot F^{k-1}\left(x_{(k)}\right)\left[1-F_{X}\left(x_{(k)}\right)\right]^{n-k}$

STAT 702/J702 B.Habing Univ. of S.C. \qquad

Example 1) Say you conduct 10 independent tests of hypotheses. How small should the smallest pvalue be for you to reject it at a 0.05 level?

That is, what is the $5^{\text {th }}$ - $\%$ ile for the $1^{\text {st }}$ order statistic?

Example 2) $x_{(k)}$ for a uniform random variable.

This is a beta distribution with parameters k and $\mathrm{n}-\mathrm{k}+1$.

The joint p.d.f. of all of the order statistics is:

$$
\begin{aligned}
& f_{X_{(1)}, \ldots X_{(n)}}\left(x_{(1)}, \ldots x_{(n)}\right)= \\
& n!f\left(x_{(1)}\right) \cdots f\left(x_{(n)}\right)
\end{aligned}
$$

One way to find the joint p.d.f. of a pair of order statistics would be to integrate out the $n-2$ you are not concerned with.

Another way is to use what the text calls "a differential argument" (Theorem A on 101 uses this to prove the result in the hmwk.)

Say we want the joint p.d.f. of $X_{(i)}$ and $X_{(j)}$ where $i<j$.
The trick to getting the joint p.d.f. directly is try to let our insights into discrete distributions apply to continuous random variables. \qquad
In particular we will imagine that:
$f(x, y)=P[x \leq X \leq x+d x, y \leq Y \leq y+d y]$
$f(x)=P[x \leq X \leq x+d x]$
\qquad

And so... $\quad f_{X_{(i)}, X_{(j)}}\left(X_{(i)}, X_{(j)}\right)=$ $\cdot \frac{n!}{(i-1)!(j-i-1)!(n-j)!}$ - $F_{X}{ }^{i-1}\left(X_{(i)}\right)$
$\cdot\left[F_{X}\left(x_{(j)}\right)-F_{X}\left(x_{(i)}\right)\right]^{j-i-1}$
$\cdot\left[1-F_{X}\left(x_{(j)}\right)\right]^{n-j}$

- $f_{X}\left(x_{(i)}\right) f_{X}\left(x_{(j)}\right)$

