
\qquad
\qquad
\qquad
\qquad
\qquad

3.6.2 - Functions of Joint Random Variables
 (X, Y) have joint pdf $f_{X Y}(x, y)$.

\qquad

We want the distribution of $\mathrm{U}=\mathrm{g}_{1}(\mathrm{X}, \mathrm{Y}), \mathrm{V}=\mathrm{g}_{2}(\mathrm{X}, \mathrm{Y})$.
E.g. : $\mathrm{U}=\mathrm{X}+\mathrm{Y}, \mathrm{V}=\mathrm{Y}^{2}$ or $\mathrm{U}=\mathrm{X}+\mathrm{Y}$, $V=X-2 Y$, etc. \qquad
\qquad

For the continuous case the joint pdf of (U, V) is \qquad
$f_{\mathrm{U}, \mathrm{V}}(u, v)=f_{\mathrm{X}, \mathrm{Y}}\left(h_{1}(u, v), h_{2}(u, v)\right)|J|$ \qquad
where h_{1} and h_{2} are the inverse
functions: $\left.x=h_{1}(u, v), y=h_{2}(u, v)\right)$
And J is the Jacobian $J=\left|\begin{array}{ll}\frac{d h_{1}}{d u} & \frac{d h_{1}}{d v} \\ \frac{d h_{2}}{d u} & \frac{d h_{2}}{d v}\end{array}\right|$
STAT 702/J702 B.Habing Univ. of S.C.
mill ins \qquad

Example 1) X and Y have joint p.d.f.

$$
f_{\mathrm{XY}}(x, y)=2 \quad 0 \leq x<y \leq 1
$$

$\mathrm{U}=\mathrm{X} / \mathrm{Y}$ and $\mathrm{V}=\mathrm{Y}$

Find the joint and marginal p.d.f's of X and Y .
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Example 2) X and Y are bivariate normal with means 0 , variances 1 , \qquad and correlation $=0$.

Let $\quad r=\sqrt{x^{2}+y^{2}}$ and $\theta=\tan ^{-1}\left(\frac{y}{x}\right)$
Find the joint and marginal distributions.
\qquad

3.6.1 - Special Case 1 - Convolution

In general say $Z=X+Y$ \qquad
We can find a general formula for \qquad $\mathrm{F}_{\mathrm{Z}}(z)=\mathrm{P}(\mathrm{Z}<z)$ simply by finding the appropriate area under $f(x, y)$. \qquad
Taking the derivative then gives us the pdf.
\qquad
\qquad
\qquad

3.6.1-Special Case 2 - Quotient

A general formula for the quotient \qquad $\mathrm{Z}=\mathrm{Y} / \mathrm{X}$ can also be derived by examining the CDF.

To do this easily, note that if $\mathrm{y} / \mathrm{x} \leq \mathrm{z}$ then if $x>0$ we have $y \leq x z$ and if $x<0$ then $y \geq x z$.
\qquad
\qquad
\qquad
\qquad
\qquad

Back to the earlier example)

X and Y have joint p.d.f.
$f_{\mathrm{XY}}(x, y)=2 \quad 0 \leq x<y \leq 1$
$\mathrm{U}=\mathrm{X} / \mathrm{Y}$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

3.7 - Order Statistics

Let $X_{1}, X_{2}, \ldots . X_{n}$ be independent random variables with the same \qquad CDF $\mathrm{F}_{\mathrm{X}}(x)$.

The values in order from lowest to smallest are the order statistics \qquad $X_{(1)}, X_{(2)}, \ldots X_{(n)}$.
\qquad

