STAT 702/J702

October $5^{\text {th }}, 2004$
-Lecture 14-

Instructor: Brian Habing Department of Statistics
Telephone: 803-777-3578
E-mail: habing@stat.sc.edu

STAT 702/J702 B.Habing Univ. of S.C
miln
1

Today

- Homework
- Joint Distributions (continued)
Chapter 2 \#67: The Weibull has CDF

$$
\begin{aligned}
& F(x)=1-e^{-(x / \alpha)^{\beta}} \\
& \text { for } x \geq 0, \alpha>0, \text { and } \beta>0
\end{aligned}
$$

a) Find the density function.

\qquad
b) Show if W follows a Weibull, then $\mathrm{X}=(\mathrm{W} / \alpha)^{\beta}$ follows an exponential. \qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Chapter 3 - Joint Distributions

The joint behavior of two random variables X and Y is determined by there CDF:
$\mathrm{F}_{\mathrm{XY}}(x, y)=\mathrm{P}(\mathrm{X} \leq x, \mathrm{Y} \leq y)$

STAT 702/J702 B.Habing Univ. of S.C.
min) (Tm

3.2 - Discrete R.V.'s

For discrete R.V.'s the joint p.m.f. is

$$
\mathrm{p}(x, y)=\mathrm{P}(\mathrm{X}=x, \mathrm{Y}=y)
$$

\qquad

The Marginal p.m.f of X is

$$
\mathrm{p}_{x}(\mathrm{x})=\Sigma_{y} \mathrm{p}(x, y)
$$

The Conditional p.m.f. of X is

$$
\begin{aligned}
& \mathrm{p}_{\mathrm{X} \mid \mathrm{Y}}(x \mid y)=\mathrm{P}(\mathrm{X}=x \mid \mathrm{Y}=y) \\
& \quad=\mathrm{P}(\mathrm{X}=x, \mathrm{Y}=y) / \mathrm{P}(\mathrm{Y}=y) \\
& \quad=\mathrm{p}_{\mathrm{XY}}(x, y) / \mathrm{p}_{\mathrm{Y}}(y)
\end{aligned}
$$

X and Y are independent if

$$
\mathrm{F}_{\mathrm{XY}}(x, y)=\mathrm{F}_{\mathrm{X}}(x) \mathrm{F}_{\mathrm{X}}(y)
$$

This implies that

$$
\mathrm{p}_{\mathrm{XY}}(x, y)=\mathrm{p}_{\mathrm{X}}(x) \mathrm{p}_{\mathrm{Y}}(y)
$$

It also works for functions $\mathrm{g}(\mathrm{x})$ and h(y).
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

3.3 Continuous R.V.'s

Continuous (X, Y) have joint cdf

$$
\mathrm{F}_{\mathrm{XY}}(\mathrm{x}, \mathrm{y})=\mathrm{P}(\mathrm{X} \leq x, \mathrm{Y} \leq y)
$$

The joint pdf is

$$
f_{X Y}(x, y)=\frac{\partial^{2}}{\partial x \partial y} \mathrm{~F}_{X Y}(x, y)
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

So
$F(x, y)=\int_{-\infty}^{x} \int_{-\infty}^{y} f(u, v) d u d v$
and
$P((x, y) \in A)=\iint_{A} f(x, y) d x d y$

The marginal p.d.f.'s are analogous to the marginal p.m.f.'s for discrete variables, but are defined using integrals:

$$
f_{X}(x)=\int_{-\infty}^{\infty} f(x, y) d y, \quad f_{y}(y)=\int_{-\infty}^{\infty} f(x, y) d x .
$$

\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Example 3)

$$
\begin{aligned}
& f(x, y)=\frac{1}{2 \pi \sigma_{x} \sigma_{y} \sqrt{1-\rho^{2}}} \exp \left\{-\frac{1}{2\left(1-\rho^{2}\right)}\left[\frac{\left(x-\mu_{x}\right)^{2}}{\sigma_{x}^{2}}\right.\right. \\
& \left.\left.-\frac{2 \rho\left(x-\mu_{x}\right)\left(y-\mu_{y}\right)}{\sigma_{x} \sigma_{y}}+\frac{\left(y-\mu_{y}\right)^{2}}{\sigma_{y}{ }^{2}}\right]\right\}, \\
& -\infty<\mu_{x}, \mu_{y}<\infty, \quad \sigma_{x}, \sigma_{y}>0,-1<\rho<1
\end{aligned}
$$

\qquad

