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STAT 702/J702 
October 5th, 2004

-Lecture 14-

Instructor:  Brian Habing
Department of Statistics

Telephone:  803-777-3578
E-mail: habing@stat.sc.edu
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Today

• Homework

• Joint Distributions (continued)
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Chapter 2 #67: The Weibull has CDF

a) Find the density function.
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b) Show if W follows a Weibull, then 
X=(W/α)β follows an exponential.
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c) How could Weibull random 
variables be generated from a 
uniform random generator?
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Also) Use R to plot the pdf for a few 
values of alpha and beta to demonstrate 
how they affect the behavior of the
Weibull distribution.
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Chapter 3 – Joint Distributions

The joint behavior of two random 
variables X and Y is determined by 
there CDF:

FXY(x ,y ) = P(X≤x, Y≤y)
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3.2 - Discrete R.V.’s

For discrete R.V.’s the joint p.m.f. is 

p(x, y ) = P(X=x, Y=y )
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Example)  A fair coin is tossed three 
times.  Let X=number of heads in 
three tossings and Y= difference (in 
absolute values) between the 
number of heads and number of 
tails.
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The Marginal p.m.f of X is  
pX(x) =Σy p(x, y )

The Conditional p.m.f. of X is
pX|Y(x | y ) = P(X=x |Y=y )

= P(X=x, Y=y ) / P(Y=y )
=pXY(x, y )/pY(y )
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X and Y are independent if 
FXY(x, y ) = FX(x) FX (y )

This implies that
pXY(x, y )= pX(x ) pY(y )

It also works for functions g(x) and 
h(y).
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3.3  Continuous R.V.’s

Continuous (X, Y) have joint cdf 
FXY(x,y)=P(X≤x, Y≤y)

The joint pdf is 
f XY(x, y) = ∂2 FXY (x, y )

∂x ∂y
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The marginal p.d.f.’s are analogous 
to the marginal p.m.f.’s for discrete 
variables, but are defined using 
integrals:
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The conditional p.d.f.’s are also 
analogous:
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Example 1)  f (x, y ) = 2, 0 < x < y <1
and 0 elsewhere
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Example 2)

f (x, y ) = λ2 exp(-y λ)     
0 ≤ x ≤ y ≤ 1, λ>0
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Example 3)
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-∞<µx, µy<∞,   σx, σy > 0,  -1< ρ <1


