STAT 702/J702
September 30th, 2004

- Lecture 13-

Instructor: Brian Habing
Department of Statistics
Telephone: 803-777-3578
E-mail: habing@stat.sc.edu

STAT 702/J702 B.Habing Univ. of S.C.
min) (Tm
${ }^{1}$

Today

- Functions of Continuous

Distributions (continued)

- Joint Distributions

2.2.2-The Gamma Distribution

$$
g(t)=\frac{\lambda^{\alpha}}{\Gamma(\alpha)} t^{\alpha-1} e^{-\lambda t} \text { for } t \geq 0
$$

2.2.3 - The Normal Distribution

$f(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{\frac{-(x-\mu)^{2}}{2 \sigma^{2}}}$ for $-\infty<x<\infty$ STAT 702/J702 B.Habing Univ. of S.C. atf $)^{(1)}(\mathrm{n}$ ${ }^{3}$
\qquad

2.3 - Functions of Random
 Variables

\qquad
Let $\mathrm{Y}=a \mathrm{X}+b$ \qquad
$\mathrm{F}_{\mathrm{Y}}(y)=\mathrm{F}_{\mathrm{X}}((y-b) / a)$ \qquad $f_{\mathrm{Y}}(y)=(1 / a) f_{\mathrm{X}}((y-b) / a)$
e.g. if $X \sim N\left(\mu, \sigma^{2}\right)$ then $(X-\mu) / \sigma \sim Z$ \qquad
\qquad
$\mathrm{Y}=g(\mathrm{X})$: Let X be a continuous RV
\qquad with p.d.f. $f(x)$ and $\mathrm{Y}=g(\mathrm{X})$, where g is differentiable and strictly monotone every where that $f(x)>0$.
\qquad
\qquad

Then

$$
f_{Y}(y)=f_{X}\left(g^{-1}(y)\right)\left|\frac{d}{d y} g^{-1}(y)\right|
$$

\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Chapter 3 - Joint Distributions
The joint behavior of two random variables X and Y is determined by there CDF:

$$
\mathrm{F}_{\mathrm{XY}}(x, y)=\mathrm{P}(\mathrm{X} \leq x, \mathrm{Y} \leq y)
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

We can use this definition to find the area of any given rectangle:
$P\left(x_{1}<X \leq x_{2}, y_{1}<Y \leq y_{2}\right)=$
$F_{X Y}\left(x_{2}, y_{2}\right)-F_{X Y}\left(x_{1}, y_{2}\right)$
$-F_{X Y}\left(x_{2}, y_{1}\right)+F_{X Y}\left(x_{1}, y_{1}\right)$,
for $\mathrm{x}_{1}<\mathrm{x}_{2}, \mathrm{y}_{1}<\mathrm{y}_{2}$.

3.2 - Discrete R.V.'s

For discrete R.V.'s the joint p.m.f. is

$$
\mathrm{p}(x, y)=\mathrm{P}(\mathrm{X}=x, \mathrm{Y}=y)
$$

\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

