STAT 702/J702
September 28rd 2004
-Lecture 12-

Instructor: Brian Habing
Department of Statistics
Telephone: 803-777-3578
E-mail: habing@stat.sc.edu

STAT 702/J702 B.Habing Univ. of S.C
mint
${ }^{1}$

Today

- Exam Solutions
- Functions of Continuous Distributions

1) Consider the random variable X defined by the p.m.f.

x	-1	0	1	2	5
$p(x)$	0.5	0.1	0.1	0.25	0.05

\qquad
\qquad
Graph the c.d.f. for X and find its mean and standard deviation.

\qquad
\qquad
\qquad
\qquad
2) A gourmet pizza place offers a special where you can choose 2 of their 5 cheeses and 4 of their 20 vegetables. How many different
\qquad pizzas are possible with this special? \qquad
\qquad
\qquad
\qquad
3) Machines 1 and 2 each produce 20,000 parts per day with a defective rate of 1.0%. Machines 3,4 , and 5 each produce 15,000 parts per day with a defective rate of 1.3%. What is the probability that a randomly selected defective was produced by machine 1 ?
\qquad
4) Consider events A and B with $P(A)=0.2$ and $P(B)=0.2$. Can A and \qquad B be both disjoint and independent? Justify your answer \qquad mathematically using the definitions. \qquad
\qquad
\qquad
\qquad
5) The brother has probability p_{1} of making each shot he attempts and the sister has probability p_{2} of making each shot she attempts. The first one to make it when the other misses is the winner. You may assume the shots are ind. of each other. Let $\mathrm{X}=\#$ rounds the game takes to finish. Name the distribution of X, give the value of its parameter(s), and the expected number of rounds it will take for the game to finish.

STAT 702/J702 B.Habing Univ. of S.C.
折) (10n
6) Consider taking a sample of size n \qquad from a population of size N with percentage of "successes"= p . One of \qquad the issues in deciding whether to use the binomial to approximate the
\qquad hypergeometric is how different the estimated standard deviation will be. \qquad What is the largest (in terms of N and/or p) that the sample size n be so \qquad that $1 \geq \sigma_{\text {hyper }} / \sigma_{\text {binomial }} \geq 0.95$.

STAT 702/J702 B.Habing Univ. of S.C.

7) Potholes occur at a rate of approximately 5 per mile on a stretch of highway. Choose an appropriate distribution to assume \qquad and estimate the probability that no potholes will be encountered in the \qquad next $1 / 2$ mile? \qquad
\qquad
\qquad
8) An in-depth survey of the U.S. senate managed to contact 45 randomly chosen senators out of the 100. If only 5% of all 100 senators agree with the position we are investigating, what is the probability that at least one of those in our sample agreed with the position?
9) An assembly line produces parts \qquad with a defective rate of 1.5%. Choose an appropriate distribution to assume and estimate the number of defectives that will be found in the next 20 that are sampled.
10) Consider a geometric random variable X with parameter p. Find the values of p that minimize and maximize $\operatorname{Var}(\mathrm{X})$ and the corresponding values of the variances. Make sure to justify your answer, including using calculus to find any potential local minima and maxima.
\qquad
11) Consider a negative binomial random variable X with parameters p and r. Use the ratio of
consecutive terms (and simplify the resulting expression) to give the formula for finding the value of k that maximizes $\mathrm{P}[\mathrm{X}=\mathrm{k}]$.

2.2.2-The Gamma Distribution

$$
g(t)=\frac{\lambda^{\alpha}}{\Gamma(\alpha)} t^{\alpha-1} e^{-\lambda t} \text { for } t \geq 0
$$

2.2.3 - The Normal Distribution

$f(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{\frac{-(x-\mu)^{2}}{2 \sigma^{2}}}$ for $-\infty<x<\infty$
STAT 702/J702 B.Habing Univ. of S.C. wind 14

2.3 - Functions of Random Variables

Let $\mathrm{Y}=a \mathrm{X}+b$
$\mathrm{F}_{\mathrm{Y}}(y)=\mathrm{P}(\mathrm{Y} \leq y)$
$=\mathrm{P}(a \mathrm{X}+b \leq y)$
$=\mathrm{P}(\mathrm{X} \leq(y-b) / a)$
$=\mathrm{F}_{\mathrm{x}}((y-b) / a)$

$$
\begin{aligned}
f_{\mathrm{Y}}(y) & =\mathrm{dF}_{\mathrm{Y}}(y) \\
& =\mathrm{dF}_{\mathrm{X}}((y-b) / a) \\
& =(1 / a) f_{\mathrm{X}}((y-b) / a)
\end{aligned}
$$

Say X is $\operatorname{Normal}\left(\mu, \sigma^{2}\right) \ldots$
$\mathrm{Y}=g(\mathrm{X})$: Let X be a continuous RV \qquad with p.d.f. $f(x)$ and $Y=g(X)$, where g is differentiable and strictly monotone every where that $f(x)>0$.
\qquad
\qquad
Then

$$
f_{Y}(y)=f_{X}\left(g^{-1}(y)\right)\left|\frac{d}{d y} g^{-1}(y)\right|
$$

\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

