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STAT 702/J702 
September 23rd, 2004

-Lecture 11-

Instructor:  Brian Habing
Department of Statistics

Telephone:  803-777-3578
E-mail: habing@stat.sc.edu
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Today

• Homework Solutions

• Gamma Distribution

• Normal Distribution
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Ch. 2 #31b)  Phone calls are 
received at a certain residence as a 
Poisson process with parameter 
λ=2 per hour. 
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Ch. 2 #40)  Suppose that X has the 
density function f (x)=cx2 for       
0≤x ≤1 and 0 otherwise.

a) Find c.
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b) Find the cdf.

c) What is P(0.1≤X<0.5)?
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2.2.1 – Exponential Distribution
In a Poisson process let                            

X=time until the next occurrence

f (x ) = λe-λx

E(X) = 1/λ

Var(X) = 1/λ2
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Example: A high speed network 
suffers brief spot outages 
according to a Poisson process 
with rate of 0.001 per  hour.  

a) What is the probability that the 
next outage will happen within the 
coming hour?
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b) What is the expected amount of 
time until the next outage?

c) How many outages do you expect 
to occur in the next 72 hours?
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d) A failure occurs at 2.46 hours.  
What is the probability that the next 
failure occurs between 2.46 and 
3.46 hours?
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2.2.2-The Gamma Distribution

0   
)(

)( 1 ≥
Γ

= −− tettg t forλα
α

α
λ

0   )(
0

1 >∫=Γ
∞

−− xdueux ux for  Where

STAT 702/J702     B.Habing      Univ. of S.C. 11

α is called the shape parameter and 
λ is called the scale parameter

We will see later that:

E(T)=α/λ

Var(T)=α/λ2
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t<-(0:1000)/100
g_t<-dgamma(t,shape=1,rate=1)
plot(t,g_t,xlim=c(0,10),

type="l")
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The Gamma Function (Ch.2 #49)

a) Γ(1)=1             b) Γ(x +1)=x Γ(x )

c)  Γ(n)=(n-1)!      d) Γ( ½ ) = sqrt(π)
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2.2.3 - The Normal Distribution
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2.3 - Functions of Random Variables

Let Y=a X+b

FY(y ) = P(Y ≤ y )

= P(aX+b ≤ y )

= P(X ≤ (y –b)/a )

= FX( (y –b)/a ) 
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f Y(y ) = dFY(y )

=dFX( (y –b)/a ) 

=(1/a ) f X( (y –b)/a )

Say Y is Normal (µ, σ 2) …


