STAT 702/J702
September $16^{\text {th }}, 2004$
-Lecture 9-

Instructor: Brian Habing
Department of Statistics
Telephone: 803-777-3578
E-mail: habing@stat.sc.edu

STAT 702/J702 B.Habing Univ. of S.C
miln
1

Today

- Homework Solutions
- Poisson Distribution
- Continuous Random Variables

STAT 702/J702 B.Habing Univ. of S.C.
, $1 \mathrm{H}_{2} \mathrm{CH}$

Ch 4 \#45) $E(X)=E(Y)=\mu$, but $\sigma_{x} \neq \sigma_{y}$. Let $Z=\alpha X+(1-\alpha) Y$.
a) Show that $\mathrm{E}(\mathrm{Z})=\mu$
b) Find α in terms of σ_{x} and σ_{y} to minimize $\operatorname{Var}(Z)$.

Ch 4 \#45) $\mathrm{E}(\mathrm{X})=\mathrm{E}(\mathrm{Y})=\mu$, but $\sigma_{x} \neq \sigma_{y}$. Let $Z=\alpha X+(1-\alpha) Y$.	
a) Show that $\mathrm{E}(\mathrm{Z})=\mu$	
b) Find α in terms of σ_{x} and σ_{y} to minimize $\operatorname{Var}(Z)$.	

\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

1. Occurrences of events in non- \qquad overlapping intervals are independent.
2. The probability of exactly one change in an interval of length h is $\lambda h+o(h)$.
3. The probability of two or more occurences in an interval of length h is $o(h)$.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Examples include:

- The number of radioactive particles \qquad emitted by a radioactive isotope.
- Number of people arriving in a line.
- The number of phone calls arriving at a telephone exchange.
\qquad
\qquad
\qquad
\qquad
\qquad

A Poisson process is very similar to a \qquad binomial experiment where the small sub-intervals constitute the \qquad trials and X is the number of occurrences. \qquad

In fact we can derive the p.d.f. of the
\qquad Poisson distribution by taking a binomial and letting $n \rightarrow \infty$ and $n p \rightarrow \lambda$.
\qquad
\qquad
\qquad

For the Poisson Distribution we have:
$P(X=x)=\frac{\lambda^{x}}{x!} e^{-\lambda}$
$\mu_{X}=\lambda$
$\sigma_{X}^{2}=\lambda$
\qquad

Example: Between 2am and 4am cars pass the mile marker at a rate of 24 per hour. What is the probability that 0 cars will pass in a 5 minute span?

One car?

What is the expected number of cars to pass by in the 5 minute span?

STAT 702/J702 B.Habing Univ. of S.C.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

The probability density function (pdf) $f(x)$ satisfies the following:
a) $f(x) \geq 0$ for all x.
b) $\int_{-\infty}^{+\infty} f(x) d x=1$
c) $P(a<X<b)=\int_{a}^{b} f(x) d x$

The cdf is defined the same way:

$$
\mathrm{F}(\mathrm{X})=\mathrm{P}(\mathrm{X} \leq \mathrm{x})=\int_{-\infty}^{x} f(x) d x
$$

For expected values we need to change the summation into an integral:
$E(X)=\sum x p(x) \Rightarrow \int_{-\infty}^{+\infty} x f(x) d x$
$\operatorname{Var}(X)=\sum(x-\mu)^{2} p(x)$

$$
\Rightarrow \int_{-\infty}^{+\infty}(x-\mu)^{2} f(x) d x
$$

\qquad

