
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Today	
- Homework Solutions	
- Expected Values in More Detail	

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Ch. 1 \#18a) A lot of n items contains k defectives, and m are selected at random. How should m be chosen so that the probability of at least \qquad one defective is 0.90 ?

What is the value of m for $n=1000$
\qquad
\qquad and $k=10$?
\qquad
\qquad

First note that this is a \qquad hypergeometric.

Also note that
\qquad
$P[1$ or more defectives $]=0.9$
is the same as
$P[0$ defectives $]=0.1$.
\qquad

So we get the formula...
$P[0$ defectives out of $m]=\frac{\binom{k}{0}\binom{n-k}{m}}{\binom{n}{m}}=0.10$ \qquad
\qquad
\qquad
which is very messy. So we could expand it out...
\qquad
\qquad

STAT 702/J702 B.Habing Univ. of S.C. \qquad

Ch 1 \#35a) Prove the following identity both algebraically and by interpreting its meaning combinatorically

$$
\binom{n}{r}=\binom{n}{n-r}
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Chapter 2 - RVs (continued...)

A discrete random variable X is defined by its probability mass \qquad function $p\left(x_{\mathrm{i}}\right)=\mathrm{P}\left(\mathrm{X}=x_{\mathrm{i}}\right)$

The cumulative distribution function \qquad (cdf) is $\quad F(x)=\mathrm{P}(\mathrm{X} \leq x)$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

The mean or expected value of a \qquad discrete random variable X is
$\mu_{\mathrm{X}}=\mathrm{E}(\mathrm{X})=\Sigma_{\mathrm{i}} x_{\mathrm{i}} p\left(x_{\mathrm{i}}\right)$

The variance of a discrete random variable X is
$\sigma_{\mathrm{X}}{ }^{2}=\operatorname{Var}(\mathrm{X})=\Sigma_{\mathrm{i}}\left(x_{\mathrm{i}}-\mu_{X}\right)^{2} p\left(x_{\mathrm{i}}\right)$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

We have already seen the
\qquad Binomial Distribution

$$
p(x)=\binom{n}{x} p^{x}(1-p)^{n-x} \text { for } x \in 0, \ldots n
$$

\qquad
\qquad
And Hypergeometric Distribution \qquad
$p(x)=\frac{\binom{r}{x}\binom{n-r}{m-x}}{\binom{n}{m}}$ for $x \in 0, \ldots \min (m, r)$ \qquad

Notice that calculating the mean and variance of these distributions appears to be very unpleasant!

For example
$E(X)=\sum_{x=0}^{n} x p(x)=\sum_{x=0}^{n} x\binom{n}{x} p^{x}(1-p)^{n-x}$

Expected Values for Discrete RVs (from Chapter 4)

Definition (pg. 111): If X is a discrete
\qquad RV with p.m.f. $\mathrm{p}(x)$ then

$$
\mathrm{E}(\mathrm{X})=\Sigma_{x} x p(x)
$$

when it exists.
\qquad

Expected value of a function:

Theorem (Pg. 116): If X is a discrete RV with p.m.f. $\mathrm{p}_{\mathrm{X}}(x)$ then

$$
\mathrm{E}(g(\mathrm{X}))=\Sigma_{\mathrm{x}} g(x) p_{\mathrm{x}}(x)
$$

\qquad

Proof: Let Y be the random variable where for any $\omega \in \Omega, \mathrm{Y}(\omega)=g(\mathrm{X}(\omega))$.

Let A_{i} be all the x s that correspond to y_{i}.

Note that this gives $p_{\mathrm{Y}}\left(y_{\mathrm{i}}\right)=\Sigma_{\mathrm{x} \in \mathrm{A}_{\mathrm{i}}} p_{\mathrm{x}}\left(x_{\mathrm{i}}\right)$ \qquad
And by definition \qquad

$$
\mathrm{E}(g(\mathrm{X}))=\mathrm{E}(\mathrm{Y})=\Sigma_{\mathrm{i}} y_{\mathrm{i}} p_{\mathrm{Y}}\left(y_{\mathrm{i}}\right)
$$

\qquad
\qquad

Note that this gives $p_{\mathrm{Y}}\left(y_{\mathrm{i}}\right)=\Sigma_{\mathrm{x} \in \mathrm{A}_{\mathrm{i}}} p_{\mathrm{X}}(x)$
So... $\mathrm{E}(g(\mathrm{X}))=\mathrm{E}(\mathrm{Y})=\Sigma_{\mathrm{i}} y_{\mathrm{i}} p_{\mathrm{Y}}\left(y_{\mathrm{i}}\right)$
$=\Sigma_{i} y_{i}\left\{\sum_{x \in A_{i}} p_{x}(x)\right\}$
$=\Sigma_{\mathrm{i}} \Sigma_{\mathrm{x} \in \mathrm{A}_{\mathrm{i}}} y_{\mathrm{i}} p_{\mathrm{x}}(x)$
$=\Sigma_{\mathrm{i}} \Sigma_{\mathrm{x} \in \mathrm{A}_{\mathrm{i}}} g(x) p_{\mathrm{x}}(x)$
$=\Sigma_{x} g(x) p_{x}(x) \quad$!
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

One place this is used is to get the formula for variance:
$\operatorname{Var}(\mathrm{X}) \equiv \mathrm{E}\left[\left(\mathrm{X}-\mu_{\mathrm{X}}\right)^{2}\right]$
$=\Sigma_{\mathrm{i}}\left(x_{\mathrm{i}}-\mu_{\chi}\right)^{2} p\left(x_{\mathrm{i}}\right)$
\qquad

The theorem also allows us to prove two results about a linear function of a random variable:

$$
g(\mathrm{X})=a+b \mathrm{X}
$$

The constant a represents a shift and the multiplier b represents a \qquad change of scale.
\qquad
\qquad

$$
\begin{aligned}
\mathrm{E}(a+b \mathrm{X}) & =\Sigma_{\mathrm{x}}(a+b x) p_{\mathrm{x}}(x) \\
& =\Sigma_{\mathrm{x}}\left\{a p_{\mathrm{x}}(x)+b x p_{\mathrm{x}}(x)\right\} \\
& =\Sigma_{\mathrm{x}} a p_{\mathrm{x}}(x)+\Sigma_{\mathrm{x}} b x p_{\mathrm{x}}(x) \\
& =a \Sigma_{\mathrm{x}} p_{\mathrm{x}}(x)+b \Sigma_{\mathrm{x}} x p_{\mathrm{x}}(x) \\
& =a+b \mathrm{E}(x)
\end{aligned}
$$

$\operatorname{Var}(a+b \mathrm{X})=\mathrm{E}\left[\left((a+b \mathrm{X})-\mu_{a+b \mathrm{X}}\right)^{2}\right]$
$=\mathrm{E}\left[\left(a+b \mathrm{X}-\left(a+b \mu_{\mathrm{X}}\right)\right)^{2}\right]$
$=\mathrm{E}\left[\left(b \mathrm{X}-b \mu_{\mathrm{X}}\right)^{2}\right]$
$=\mathrm{E}\left[b^{2}\left(\mathrm{X}-\mu_{\mathrm{x}}\right)^{2}\right]$
$=b^{2} \mathrm{E}\left[\left(\mathrm{X}-\mu_{\mathrm{X}}\right)^{2}\right]$
$=b^{2} \operatorname{Var}(X)$
\qquad

Neither of these seem to help us with the finding the expected value and variance of the binomial though.

What could help us there is something that let us find the expectation and variance of a sum of independent random variables.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Theorem: (special case of A on 119 and A on 131) \qquad
Let $X_{1}, X_{2}, \ldots X_{n}$ be mutually independent random variables, then:

$$
\begin{aligned}
& \mu_{\Sigma \mathrm{X}}=\mathrm{E}\left(\Sigma_{\mathrm{i}} \mathrm{X}_{\mathrm{i}}\right)=\Sigma_{\mathrm{i}} \mathrm{E}\left(\mathrm{X}_{\mathrm{i}}\right)=\Sigma \mu_{\mathrm{X}} \\
& \sigma_{\Sigma \mathrm{X}}^{2}=\operatorname{Var}\left(\Sigma_{\mathrm{i}} \mathrm{X}_{\mathrm{i}}\right)=\Sigma_{\mathrm{i}} \operatorname{Var}\left(\mathrm{X}_{\mathrm{i}}\right)=\Sigma \sigma_{\mathrm{X}}^{2}
\end{aligned}
$$

\qquad
\qquad
\qquad
\qquad
\qquad

Sketch of Proof: Consider the case
\qquad of two random variables X and Y with p.m.f.s $p_{\mathrm{X}}(x)$ and $p_{\mathrm{Y}}(y)$ respectively. \qquad

$$
\mathrm{E}(\mathrm{X}+\mathrm{Y})=\Sigma_{x, y}(x+y) \mathrm{P}(\mathrm{X}=x, \mathrm{Y}=y)
$$

$$
=\Sigma_{x, y}(x+y) \mathrm{P}(\mathrm{X}=x) \mathrm{P}(\mathrm{Y}=y)
$$

$$
\begin{aligned}
= & \Sigma_{x, y}(x+y) \mathrm{P}(\mathrm{X}=x) \mathrm{P}(\mathrm{Y}=y) \\
= & \Sigma_{x, y} x \mathrm{P}(\mathrm{X}=x) \mathrm{P}(\mathrm{Y}=y) \\
& +\Sigma_{x, y} y \mathrm{P}(\mathrm{X}=x) \mathrm{P}(\mathrm{Y}=y) \\
= & \Sigma_{x} \Sigma_{y} x \mathrm{P}(\mathrm{X}=x) \mathrm{P}(\mathrm{Y}=y) \\
& +\Sigma_{x} \Sigma_{y} y \mathrm{P}(\mathrm{X}=x) \mathrm{P}(\mathrm{Y}=y) \\
= & \Sigma_{x} \Sigma_{y} x \mathrm{P}(\mathrm{X}=x) \mathrm{P}(\mathrm{Y}=y) \\
& +\Sigma_{y} \Sigma_{x} y \mathrm{P}(\mathrm{Y}=y) \mathrm{P}(\mathrm{X}=x)
\end{aligned}
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

$$
=\Sigma_{x} \Sigma_{y} x \mathrm{P}(\mathrm{X}=x) \mathrm{P}(\mathrm{Y}=y)
$$

$$
+\Sigma_{y} \Sigma_{x} y \mathrm{P}(\mathrm{Y}=y) \mathrm{P}(\mathrm{X}=x)
$$

$$
=\Sigma_{x}\left\{x \mathrm{P}(\mathrm{X}=x) \Sigma_{y} \mathrm{P}(\mathrm{Y}=y)\right\}
$$

$$
+\Sigma_{y}\left\{y \mathrm{P}(\mathrm{Y}=y) \Sigma_{x} \mathrm{P}(\mathrm{X}=x)\right\}
$$

$=\Sigma_{x} x \mathrm{P}(\mathrm{X}=x)+\Sigma_{y} y \mathrm{P}(\mathrm{Y}=y)$
$=E(X)+E(Y)$

