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STAT 702/J702 
September 9th, 2004

-Lecture 7-

Instructor:  Brian Habing
Department of Statistics

Telephone:  803-777-3578
E-mail: habing@stat.sc.edu
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Today

• Homework Solutions

• Expected Values in More Detail
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Ch. 1 #18a) A lot of n items contains 
k defectives, and m are selected at 
random.  How should m be chosen 
so that the probability of at least 
one defective is 0.90?

What is the value of m for n =1000 
and k =10?  
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First note that this is a 
hypergeometric. 

Also note that                                 
P[1 or more defectives]=0.9           
is the same as                                
P[0 defectives]=0.1.
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So we get the formula…

which is very messy.  So we could 
expand it out…
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Ch 1 #35a)  Prove the following 
identity both algebraically and by 
interpreting its meaning 
combinatorically
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Ch 1 #36) What is the coefficient of  
x 3y 4 in the expansion of (x +y )7 ?
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Chapter 2 – RVs (continued…)

A discrete random variable X is 
defined by its probability mass 
function p (xi) = P(X=xi)

The cumulative distribution function 
(cdf) is F (x )=P(X≤x)
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The mean or expected value of a 
discrete random variable X is 
µX = E(X)= Σixi p (xi)

The variance of a discrete random 
variable X is                                 
σX

2 = Var(X) = Σi(xi-µX)2 p (xi)
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We have already seen the      
Binomial Distribution

And Hypergeometric Distribution
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Notice that calculating the mean and 
variance of these distributions 
appears to be very unpleasant!

For example
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Expected Values for Discrete RVs 
(from Chapter 4) 

Definition (pg. 111): If X is a discrete 
RV with p.m.f. p(x ) then

E(X)= Σxx p (x )

when it exists.
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Expected value of a function:

Theorem (Pg. 116): If X is a 
discrete RV with p.m.f. pX(x) then

E(g (X))= Σx g(x) pX(x)
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Proof: Let Y be the random variable 
where for any ω∈Ω, Y(ω)=g (X(ω)).

Let Ai be all the x’s that correspond 
to yi.

Note that this gives pY(yi)= Σx∈Ai pX(xi)

And by definition 
E(g(X))=E(Y)= Σiyi pY(yi)
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Note that this gives pY(yi)= Σx∈Ai pX(x) 
So…  E(g(X))=E(Y)= Σiyi pY(yi)

= Σiyi {Σx∈Ai pX(x) }

= Σi Σx∈Ai yi pX(x)

= Σi Σx∈Ai g(x ) pX(x)

= Σxg(x) pX(x)    ∎
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One place this is used is to get the 
formula for variance:

Var(X) ≡ E[(X-µX)2]

= Σi(xi-µX)2 p (xi)
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The theorem also allows us to prove 
two results about a linear function 
of a random variable:

g (X)=a +b X

The constant a represents a shift and 
the multiplier b represents a 
change of scale.
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E(a +b X)= Σx(a+bx )pX(x ) 

= Σx{a pX(x ) +bx pX(x ) }

=Σxa pX(x ) + Σx bx pX(x ) 

=a Σx pX(x ) + b Σxx pX(x ) 

=a + b E(x)
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Var(a +b X)= E[((a +b X) – µa +b X)2]

 = E[(a +b X – (a +b µX ))2]

 = E[(b X –b µX )2]

 = E[b 2(X –µX )2]

 = b 2E[ (X –µX )2]  

 = b 2 Var(X)
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Neither of these seem to help us with 
the finding the expected value and 
variance of the binomial though.  

What could help us there is 
something that let us find the 
expectation and variance of a sum 
of independent random variables.
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Theorem: (special case of A on 119 
and A on 131)

Let X1, X2, … Xn be mutually 
independent random variables, 
then:

µΣX = E(ΣiXi) =ΣiE(Xi) = ΣµX

σΣX
2 = Var(ΣiXi) = ΣiVar(Xi) = Σ σX

2
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Sketch of Proof: Consider the case 
of two random variables X and Y 
with p.m.f.s pX(x) and pY(y) 
respectively.

E(X+Y) = Σx,y (x +y )P(X=x,Y=y )

= Σx,y (x +y )P(X=x )P(Y=y )
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= Σx,y (x +y )P(X=x )P(Y=y )

= Σx,y x P(X=x )P(Y=y )
+ Σx,y y P(X=x )P(Y=y )

= ΣxΣy  x  P(X=x )P(Y=y )
+ ΣxΣy y  P(X=x )P(Y=y )

= ΣxΣy  x  P(X=x ) P(Y=y )
+ ΣyΣx y P(Y=y ) P(X=x )
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= ΣxΣy  x  P(X=x ) P(Y=y )
+ ΣyΣx y P(Y=y ) P(X=x )

= Σx {x  P(X=x ) Σy P(Y=y )}
+ Σy {y P(Y=y ) ΣxP(X=x ) }

= Σx x  P(X=x ) + Σy y P(Y=y )

= E(X) + E(Y)
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For a binomial X with sample size n
and probability p,

E(X) = np

Var(X) = np(1-p)


