
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Today	
- Homework Solutions	
- Finishing Binomial vs. Hypergeometric	
- Discrete Random Variables	
	2

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

As a binomial - let p be the percentage of the entire population that is defective.
$P[$ lot is accepted $]=P[0$ defectives chosen $]$

$$
=\binom{4}{0} p^{0}(1-p)^{4-0}
$$

For $p=0.2$ this probability is 0.4096

As a hypergeometric - let $r=n p=100 p$ \qquad be the number of defectives out of the lot of 100 .
$P[0$ defectives chosen $]=\frac{\binom{100 p}{0}\binom{100-100 p}{4-0}}{\binom{100}{4}}$
\qquad
\qquad
\qquad
\qquad
For $p=0.2$ this probability is 0.4033

STAT 702/J702 B.Habing Univ. of S.C.
ps<-c(0, 0.05, 0.10, 0.15, 0.2, 0.25) \qquad
binacc<-dbinom(0,4,ps)
hypacc<-
dhyper(0,100*ps,100*(1-ps),4)
plot(0,0,xlim=c(0,0.25),
ylim=c(0.2,1), type="n",
main="Black=Binomial,
Green=Hypergeometric",
xlab="Percent Defective", ylab="Prob of Accept")
lines(ps, hypacc, col="Green", lwd=2)
lines(ps,binacc, col="Black", lwd=2)

Stat 702/J702 B.Habing Univ. of S.C. Widn
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Binomial vs. Hypergeometric (cont...) \qquad
When are the binomial and \qquad hypergeometric similar?

For a fixed sample size, when the population size goes to infinity the hypergeometric probability converges to the binomial probability.

What do you lose if you sample with replacement instead? (e.g. why not always use binomial?)

Imagine the case where the population size and sample size are nearly equal?
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Chapter 2 - Random Variables

In many of the examples we saw before the event we were \qquad interested in was a number.

We converted
HHHHHHHHHTTTTTTTTT \qquad to the number 10 for example.
\qquad

A random variable is a function that \qquad assigns each sample point a numerical value.
\qquad
Depending on whether the sample \qquad space is discrete or continuous the random variable can either be \qquad discrete or continuous.

We will begin by considering discrete random variables.
\qquad
\qquad
\qquad

A discrete random variable X is defined by its probability mass function $\quad p\left(x_{i}\right)=\mathrm{P}\left(\mathrm{X}=x_{i}\right)$

Such that $\Sigma_{\mathrm{i}} p\left(x_{\mathrm{i}}\right)=1$

The p.m.f. can be graphed like a histogram.

The cumulative distribution function (cdf) is

$$
F(x)=\mathrm{P}(\mathrm{X} \leq x)
$$

This is a step function.

We can also construct numerical summaries of random variables.

The mean or expected value of a discrete random variable X is
$\mu_{\mathrm{X}}=\mathrm{E}(\mathrm{X})=\Sigma_{\mathrm{i}} x_{\mathrm{i}} p\left(x_{\mathrm{i}}\right)$

The variance of a discrete random variable X is
$\sigma_{\mathrm{X}}^{2}=\operatorname{Var}(\mathrm{X})=\Sigma_{\mathrm{i}}\left(x_{\mathrm{i}}-\mu_{X}\right)^{2} p\left(x_{\mathrm{i}}\right)$

We can also write the Bernoulli p.m.f.

$$
\begin{array}{cl}
p(x)=p^{x}(1-p)^{1-x} & \text { if } x=0 \text { or } 1 \\
0 & \text { otherwise }
\end{array}
$$

\qquad
\qquad
This puts it in the same format regardless of the value of x, and also matches the form of the binomial.

We have already seen the Binomial Distribution

$$
p(x)=\binom{n}{x} p^{x}(1-p)^{n-x} \text { for } x \in 0, \ldots . n
$$

And Hypergeometric Distribution
\qquad
\qquad
\qquad
$p(x)=\frac{\binom{r}{x}\binom{n-r}{m-x}}{\binom{n}{m}}$ for $x \in 0, \ldots \min (m, r)$

