STAT 702/J702
September 2nd 2004
Instructor: Brian Habing
Department of Statistics
LeConte 203
Telephone: 803-777-3578
E-mail: habing@stat.sc.edu

STAT 702/J702 B.Habing Univ. of S.C

\qquad

Ch. 1 \# 42) How many ways can 11 boys on a soccer team be grouped into 4 forwards, 3 midfielders, 3 defenders, and 1 goalie?
\qquad

Ch. 1 \# 57) Cabinets A, B, and C each have two drawers with one coin per drawer. A has two gold, B \qquad has two silver, and C has one gold and one silver.

A cabinet is chosen at random and a drawer is opened showing a silver. What is the chance the other is silver too?
\qquad
\qquad
\qquad
\qquad
\qquad

STAT 702/J702 B.Habing Univ. of S.C.
 \qquad

Last time... Binomial Experiment \qquad

1. n identical trials
2. Each trial has only two possible outcomes ("Success" or "Failure")
\qquad
. Probability of "Success" is a constant p for every trial
3. Trials are independent
$P[k$ successes in n trials $]=\binom{n}{k} p^{k}(1-p)^{n-k}$
STAT 702/J702 B.Habing Univ. of S.C.

Hypergeometric Experiment

1. Population of size n
2. r are "successes" and n-rare "failures"
3. A random sample of size m is taken without replacement
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Example) An assembly line produced $n=2000$ parts, of which $r=40$ were defective. (Note that this is a 0.02 defective rate). \qquad

A random sample of size $m=20$ is chosen. What is the probability that exactly 10 of these 20 will be defectives?
\qquad

The first "trick" is to realize that, since \qquad we are taking a random sample, every possible sample of size 20 \qquad has the same probability. (e.g. all of the sample points have the same \qquad probability.)
In the binomial case we figured out the probability of each sample point \qquad and then multiplied that by the number of sample points in our event.
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Example - Capture/Recapture)

Goal: To estimate the size n of a population.

Method: "Randomly" capture, tag, \qquad and release r of them. Then "randomly capture" m of them and see how many are tagged.

Now the probability of a certain number being captured will be hypergeometric!
$P[k$ tagged out of $m]=\frac{\binom{r}{k}\binom{n-r}{m-k}}{\binom{n}{m}}$

The problem is that we know r, k, and m, but we are looking for n !

Since we can't find n exactly, we will attempt to estimate it by choosing the value of n that "seems most likely". That is, what value of n would give us the largest probability of observing the k that we did.
\qquad

TAT 702/J702 B.Habing Univ. of S.C.
 \qquad

Mathematically then, we need to find \qquad

$$
\begin{aligned}
& \text { the } n \text { that maximizes } \\
& \qquad L_{n}=P[k \text { tagged out of } m]=\frac{\binom{r}{k}\binom{n-r}{m-k}}{\binom{n}{m}}
\end{aligned}
$$

\qquad
\qquad

If n was continuous we could try taking the derivative with respect to \qquad n and setting it equal to zero.
\qquad
\qquad

We will use a similar logic here and take the ratio L_{n} / L_{n-1}.

So n should be the greatest integer not exceeding $m r / k$.

So if $r=10, m=20$, and $k=4$ we estimate n to be 50 .

