STAT 702/J702
Augusts 31st, 2004
Instructor: Brian Habing
Department of Statistics
LeConte 203
Telephone: 803-777-3578
E-mail: habing@stat.sc.edu

STAT 702/J702 B.Habing Univ. of S.C

Ch. 1 \# 56) A couple has two children.

Find the probability that both are girls given that the oldest is a girl. (Define the sample space and events.)

Find the probability that both are girls given that one of them is a girl.

\qquad

Ch. 1 \# 65) Show that if A and B are independent then A and B^{C} as well as A^{C} and B^{C} are independent.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Ch. 1 \# 66) Show that \varnothing is independent of A for any event A.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Section 1.4 - Counting Rules (continued) \qquad
The fundamental tools for counting are multiplication and division: \qquad

1. If there are n_{i} possible outcomes for each of p experiments, then there are \qquad $n_{1} \times n_{2} \times \ldots n_{\mathrm{p}}$ total possible outcomes.
a. The \# of ordered samples of size r of n \qquad distinct object with replacement is n^{r}
b. The number of distinct orders of n \qquad objects is $n!=n(n-1)(n-2) \ldots(2)(1)$.
2. Ordering can be removed by division. \qquad STAT 702/J702 B.Habing Univ. of S.C. 6 \qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

As we have seen, the Binomial
\qquad Coefficient

$$
\binom{n}{r}=\frac{n!}{r!(n-r)!}
$$

is the number of distinct unordered samples of size r that can be selected from a population of size n.

It is also the number of distinct arrangements of robjects of one type and ($n-r$) objects of another.

Example) How many distinct ways can you have 4 heads out of 10 \qquad coin flips. \qquad
\qquad
\qquad

This is a special case of the multinomial coefficient:
$\binom{n}{n_{1} n_{2} \cdots n_{r}}=\frac{n!}{n_{1}!n_{2}!\cdots n_{r}!}$ where $n=n_{1}+n_{2}+\ldots+n_{r}$.
This is the \# of ways of arranging n_{1} objects of type 1, n_{2} objects of type $2 \ldots n_{r}$ objects of type r.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

It is also the number of ways of grouping n objects into r groups of sizes $n_{1}, \ldots n_{r}$.

Example 1) Three of ten applicants are admitted to a program, and the remaining seven need to be ranked on a waiting list. How many ways can this be done?
\qquad

Example 2) Ten athletes are competing for gold, silver, and bronze medals (so seven get no medal). How many distinct ways can this occur?

Example from 8/26 continued)
Components are known to have a \qquad defective rate of 0.02 (2\%) and are shipped in lots of 20.

What is the probability of finding exactly 10 defectives in a lot?

In order to determine the probability \qquad of having exactly 10 out of 20 defectives we would need to have
\qquad some way of easily counting the \qquad number of ways this can happen.
e.g. YYYYYYYYYNNNNNNNNNN YNYYYYYYYYNNNNNNNNN etc... \qquad
\qquad

In general we get the formula:
$P[k$ heads in n flips $]=\binom{n}{k} p^{k}(1-p)^{n-k}$
This applies to any situation that satisfies the conditions of being a binomial experiment.

Binomial Experiment

1. n identical trials
2. Each trial has only two possible outcomes ("Success" or "Failure")
3. Probability of "Success" is a constant p for every trial
4. Trials are independent
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Hypergeometric Experiment

1. Population of size n
2. r are "successes" and n-rare "failures" \qquad
3. A random sample of size k is \qquad taken without replacement
, Tinch 18
