STAT 702/J702
Augusts 26 ${ }^{\text {th }}, 2004$
Instructor: Brian Habing Department of Statistics

LeConte 203
Telephone: 803-777-3578
E-mail: habing@stat.sc.edu

Today

- Examples from last time
(Sections 1.2-1.3,1.5-1.6)
- Sections 1.5 Continued: Bayes' Rule
- Sections 1.4: Counting Rules

Chapter 1 - Probability (continued)

From last time...

- Complements: $P\left(A^{C}\right)=1-P(A)$
- Disjoint: $P(A \cup B)=P(A)+P(B)$
- Independence: $P(A \cap B)=P(A) P(B)$ \qquad
- +Rule: $P(A \cup B)=P(A)+P(B)-P(A \cap B)$
- x Rule: $P(A \cap B)=P(A \mid B) P(B)$ or $=P(B \mid A) P(A)$

STAT 702/J702 B.Habing Univ. of S.C. Nat
${ }^{3}$
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

What if the they were dependent? \qquad

Say your chance of making the first was 60%, but that your chance of making \qquad the second is 80% if you made the $1^{\text {st }}$ and only 30% if you missed. \qquad
\qquad
\qquad
\qquad

Example 2) Components are known to have a defective rate of 0.02 (2\%) and are shipped in lots of 20. \qquad
a) What is the probability that the first component taken from a lot is not \qquad defective?
b) What is the probability that neither of \qquad the next two components will be defective? \qquad
c) What is the probability that the entire lot of 20 contains no defectives? \qquad
STAT 702/J702 B.Habing Univ. of S.C. \qquad

Now consider finding the probability of having exactly one defective out of 20 .
d) What is the probability that the $1^{\text {st }}$ component is defective and the 19 after that all work properly?
e) What is the probability that the $1^{\text {st }}$ works, the $2^{\text {nd }}$ is defective, and 3-18 work?
f) How many different ways can you have one defective out of 20 ?
g) What is the probability of exactly 1 in 20 being defective.
STAT 702/J702 B.Habing Univ. of S.C.

In order to determine the probability of \qquad having exactly 10 out of 20 defectives we would need to have some way of easily counting the number of ways this can happen.
e.g. YYYYYYYYYNNNNNNNNNN YNYYYYYYYYNNNNNNNNN YYNYYYYYYYNNNNNNNNN etc...

STAT 702/J702 B.Habing Unitact
ath $)(\mathrm{lln}$

Example 3) Let's Make a Deal

There are three doors... one has a car,
\qquad two have livestock (you can't keep it!)

You pick a door... and I show you that another was a loser.

You can now keep your door or switch to the one I haven't shown yet.

STAT 702/J702 B.Habing Univ. of S.C
mifl ${ }^{2}(\mathrm{fm}$
\qquad

Example 3) Let's Make a Deal
There are three doors... one has a car,
two have livestock (you can't keep it!)
You pick a door... and I show you that
another was a loser.
You can now keep your door or switch to
the one I haven't shown yet.
stat $702 \pi 702$ s.habing univ. ofs.c.

Law of Total Probability:

Let $B_{1}, B_{2}, \ldots, B_{n}$ be disjoint and
 $B_{i} \cap B_{j}=\phi$ for $i \neq j$.

Then for any A,

$$
\begin{aligned}
& P(A)=P\left(A \mid B_{1}\right) P\left(B_{1}\right)+P\left(A \mid B_{2}\right) P\left(B_{2}\right)+ \\
& \quad \cdots+P\left(A \mid B_{n}\right) P\left(B_{n}\right) .
\end{aligned}
$$

Example) Machines I, II, and III produce the same product.
The rates of defectives from each are 2%, 1%, and 3% respectively.
The percent of the total product made by each are $35 \%, 25 \%$, and 40% respectively.

What percent of the product are defective?

\qquad
\qquad
\qquad
\qquad

Section 1.4 - Counting Rules
\qquad
The fundamental tools for counting are multiplication and division: \qquad

1. If there are n_{i} possible outcomes for each of p experiments, then there are \qquad $\mathrm{n}_{1} \times \mathrm{xn}_{2} \mathrm{x} \ldots \mathrm{n}_{\mathrm{p}}$ total possible outcomes.
a. The \# of ordered samples of size r of n \qquad distinct object with replacement is n^{r}
b. The number of distinct orders of n \qquad objects is $n!=n(n-1)(n-2) \ldots$ (2)(1).
2. Ordering can be removed by division. \qquad

STAT 702/J702 B.Habing Univ. of S.C. Kit) 1 litu \qquad

