STAT 702/J702
Augusts 24 ${ }^{\text {th }}, 2004$
Instructor: Brian Habing
Department of Statistics
LeConte 203
Telephone: 803-777-3578
E-mail: habing@stat.sc.edu

STAT 702/J702 B.Habing Univ. of S.C
wifl (7n

Today

- Sections 1.2 -1.3:

Sample Spaces \& Probability

- Sections 1.5-1.6:

Conditional Probability \& Independence
\qquad
2

Chapter 1 - Probability (continued)
One way of defining the probability of an event is:

The probability of an event is the proportion of times (relative frequency) that the event is expected to occur when an experiment is repeated a large number of times under identical conditions.

\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad

A probability measure on Ω is a function,
\qquad P, from (events) subsets of Ω to the real numbers (0 to 1) \qquad satisfying the following three axioms:

1. $P(\Omega)=1$ \qquad
2. $P(A) \geq 0$ for any event $A(\subset \Omega)$
3. If A_{1} and A_{2} disjoint, then

$$
P\left(A_{1} \cup A_{2}\right)=P\left(A_{1}\right)+P\left(A_{2}\right) .
$$

If $A_{1}, \ldots, A_{n}, \ldots$ are mutually disioint, then
$\mathrm{P}\left(\mathrm{A}_{1} \cup \mathrm{~A}_{2} \cup \cdots \mathrm{~A}_{\mathrm{n}} \cup \cdots\right)=\Sigma_{\mathrm{i}=1 \text { to }} \mathrm{P}\left(\mathrm{A}_{\mathrm{i}}\right)$.

STAT 702/J702 B.Habing Univ. of S.C.
did
${ }^{8}$ \qquad

The coin flipping example is discrete, so we \qquad can define the probability measure by giving a probability to each of the sample \qquad points so that the sum is 1 .

\qquad
\qquad
\qquad
\qquad
\qquad

We would get the probability of the events A and B simply by adding the probabilities assigned to their sample points.

A=Exactly one Head $=\{(\mathrm{HT}),(\mathrm{TH})\}$
$P(A)=1 / 4+1 / 4=1 / 2$
$B=$ First flip was a Head $=\{(\mathrm{HH}),(\mathrm{HT})\}$
$P(B)=1 / 4+1 / 4=1 / 2$

STAT 702/J702 B.Habing Univ. of S.C.

10

Fundamental Types of Events

- Complement- "not" A^{C}
- Null Event- Φ
- Intersection- "and" \cap
$\mathrm{A} \cap \mathrm{B}=\phi \rightarrow$ "disjoint"
- Union- "or" - inclusive u

STAT 702//702 B.Habing Univ. of S.C.
,

Properties of Probability (obtained from the three axioms)
A. $P\left(A^{C}\right)=1-P(A)$.
B. $P(\phi)=0$
C. If $A \subset B$, then $P(A) \leq P(B)$.

Proof: Since $B=A \cup\left(B \cap A^{C}\right)$, $P(B)=P(A)+P\left(B \cap A^{C}\right) \geq P(A)$.
D. Addition Law:
$P(A \cup B)=P(A)+P(B)-P(A \cap B)$.
\qquad

