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Department of Statistics

LeConte 203
Telephone:  803-777-3578
E-mail: habing@stat.sc.edu

STAT 530/J530     B.Habing      Univ. of S.C. 2

MANOVA
Multivariate Analysis of Variance 

(MANOVA) is designed to test:  
H0: μ1 = μ2 =⋯ = μk

where the μi are the (qx1) mean 
vectors.

The assumptions are the same as 
before: independence, multivariate 
normality, and equal variances.
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Four Statistics
If H is the between-group sum of squares and 

E is the within-group sum of squares (E), 
then

Wilk’s Lamda: 

Roy’s Greatest Root: Max Eigen value of E-1H
Lawley-Hotelling Trace: Trace of E-1H
Pillai Trace: Trace of H(H+E)-1

EH
E
+

=Λ
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Crab Example
MANOVA Test Criteria and F Approximations for the 

Hypothesis of No Overall CrabType Effect        
H = Type III SSCP Matrix for CrabType

E = Error SSCP Matrix
S=3    M=0    N=25.5

Statistic    Value    F Value   Num DF    Den DF  Pr > F

Wilks' Lambda   0.026  34.19      12    140.52    <.0001
Pillai's Trace  1.607  15.87      12       165    <.0001
Hotelling-Law  13.308  57.87      12    88.531    <.0001
Roy's Greatest 11.371  156.36      4        55    <.0001
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Discriminant Analysis
Discriminant Analysis tries to find the linear 

combinations of variables that do the 
best job at classifying observations into 
one of several groups.

There are many ways to pursue 
discriminant analysis such as quadratic 
discriminant analysis, neural networks, 
regression trees and support vector 
machines.  (e.g. Venables and Ripley, 
MASS2002)

STAT 530/J530     B.Habing      Univ. of S.C. 6

Fisher’s Linear Discriminant Analysis

The idea of Fisher’s Linear Discriminant
Analysis is to find the linear 
combination of variables (aTx) that 
“best distinguishes between groups”
by maximizing the between group 
sum of squares (H) divided by the 
within group sum of squares (E) 
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How?

Using theory similar to that of PCA, the 
coefficient vector a that maximizes   
aTHa/ aTEa is the first eigen vector of 
E-1H.  

aTx is Fisher’s linear discriminant function
or the first canonical discriminant
function

Each observation X is allocated to the 
group i such that aTx is closest to

i
Txa

STAT 530/J530     B.Habing      Univ. of S.C. 8

Notes
• For two groups this is the same as 

classifying each observation with the group 
whose mean it is closest to using 
Mahalanobis distance (they differ, but are 
often similar for more than 2)

• For two groups this is the same as using 
maximum likelihood and assuming 
multivariate normality and equal 
covariances
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Notes
• The corresponding eigen Value is Roy’s 

greatest root (and can also be shown 
related to Wilk’s lamda)

• There are other canonical discriminant
functions based on the other eigen vectors 
(although they do not form an orthogonal 
basis)

• Test’s can be used to see how many 
discriminant functions are needed
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Example
> library(MASS)
> attach(crabdata)
> lda(cbind(sFL,sRW,sCL,sCW),CrabType)

Coefficients of linear discriminants:
LD1         LD2        LD3

sFL 0.55668852 -0.06333663  1.0947794
sRW 0.01345867  2.49170184 -0.1427386
sCL 2.56898619 -1.00234308  1.6110090
sCW -6.23384916 -0.87881080 -2.0107102

Proportion of trace:
LD1    LD2    LD3 

0.8544 0.1431 0.0025 
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Example
Canonical Discriminant Analysis

Test of H0: The canonical correlations in
the current row and all that follow are zero 

Approximate
Eigenvalue Proportion F Value Pr > F

1    11.3714    0.8544     34.19 <.0001
2     1.9039    0.1431     13.18  <.0001
3     0.0336    0.0025     0.92    0.4031
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Example
LDA

MDS
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Example
> predict(crablda,dim=3)
$class
[1] B b B B B B B B B B B B B B B b b b b B b 

b b b b b b b b b O O O O O O O o O O
[41] O O O O O o o O o o o o o o o O o o o o
Levels: b B o O

$posterior
b    B    o    O

[1,] 0.16 0.84 0.00 0.00
[2,] 0.67 0.33 0.00 0.00
[3,] 0.25 0.75 0.00 0.00
[4,] 0.01 0.99 0.00 0.00
•
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About Prediction

The predicted probabilities are calculated 
assuming normality and follow from Bayes 
rule. 

It can be shown that the linear discriminant 
analysis is equivalent to logistic regression 
for 2 dimensions.

Allowing for unequal covariances results in 
quadratic discriminant analysis.
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Example
> table(Original=CrabType,

Predicted=predict(crablda,dim=3)$class)

Predicted
Original  b  B  o  O

b 14  1  0  0
B  1 14  0  0
o  0  0 13  2
O  0  0  1 14
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Need for Cross-Validation

A difficulty with the previous slide is that we 
are testing how good we are at predicting 
the very data we used to come up with the 
rule.   

This will almost always overestimate the 
accuracy.  

The jack-knife (or leave-one-out cross-
validation) can give a better idea of the true 
accuracy.
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Jack-Knife

The jack-knife is when a statistical procedure 
is repeated n times, once for each 
observation, where that observation is 
removed.

In measuring the accuracy of LDA the 
classification of each observation is 
determined by performing the LDA without 
that observation.
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Example
> crabcv<-lda(cbind(sFL,sRW,sCL,sCW),CrabType,

CV=T)
> table(Original=CrabType,

Predicted=crabcv$class)

Predicted
Original  b  B  o  O

b 14  1  0  0
B  1 14  0  0
o  0  0 12  3
O  0  0  1 14


