

Next

Methods Based for Representing of Finding Patterns in Data Based on Distances

- Multidimensional Scaling and Correspondence Analysis
- Cluster Analysis

Distances

A distance (or dissimilarity) $d_{i j}$ between two points iand jmust satisfy:

1) Symmetry: $d_{i j}=d_{j i}$
2) Non-negativity: $d_{i j} \geq 0$
3) Identification: $d_{i j}=0$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

How?	
Let X be the n by q matrix of coordinates we are looking for.	
Consider $\mathrm{B}=\mathrm{XX}^{\top} \ldots$	
	9

\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Properties of Classical MDS

- If we are using Euclidean distance then the classical MDS result is the \qquad same as the centered PCA solution.
- It gives the smallest values of \qquad

$$
\sum\left(d_{i j}^{2}-\hat{d}_{i j}^{2}\right)
$$

among all the possible projections into lower dimensional Euclidean
\qquad space.

