STAT 530/J530
August 30 ${ }^{\text {th }}, 2005$
Instructor: Brian Habing
Department of Statistics LeConte 203
Telephone: 803-777-3578
E-mail: habing@stat.sc.edu

STAT 530/J530 B.Habing Univ. of S.C


Today

- Homework 1
- Multivariate Data
* Data Matrix
* Summary Parameters and Statistics
* A Hint of Matrices
* What if Some Data is Missing?

STAT 530/J530 B.Habing Univ. of S.C.
mint han

Homework 1
Using R, make two variables containing the ratings of "Low Energy Use", one for males and one for females.
mdata<-
fdata<-



Homework 1 Continued
...and check the assumptions using a q-q plot. Summarize your results.


Data!
Multivariate Data is typically presented in a matrix, with each of the $n$ rows being a different observation, and each of the $q$ columns being a different variable.
$\qquad$
$\qquad$
$X=\left[\begin{array}{cccccc}x_{11} & x_{12} & \cdots & x_{1 j} & \cdots & x_{1 q} \\ x_{21} & x_{22} & & & & x_{2 q} \\ \vdots & & \ddots & & & \vdots \\ x_{i 1} & & & x_{i j} & & x_{i q} \\ \vdots & & & & \ddots & \vdots \\ x_{n 1} & x_{n 2} & \cdots & x_{n j} & \cdots & x_{n q}\end{array}\right]$ $\qquad$
$\qquad$
$\qquad$
$\qquad$

## Types of Variables

- Nominal
- Ordinal
- Interval
- Ratio

STAT 530/J530 B.Habing Univ. of S.C.


## Summarizing Data

$\qquad$
Like in univariate $\left.\left.\begin{array}{l}\text { statistics the } \\ \begin{array}{l}\text { Mean and } \\ \text { Variance are } \\ \text { commonly used } \\ \text { as summary }\end{array}\end{array} \quad \mu=\left[\begin{array}{c}\mu_{1} \\ \vdots \\ \mu_{q}\end{array}\right] \quad \sigma^{2}=\left[\begin{array}{c}\sigma_{1}^{2} \\ \vdots \\ \sigma_{q}^{2}\end{array}\right].\right].\right] ~$ as summary
$\qquad$
$\qquad$
$\qquad$ measures.

## Covariances

$\qquad$
It is also necessary to summarize the $\qquad$ relationship between the variables, and this can be done with the $\qquad$ covariance.

$$
\begin{aligned}
& \operatorname{Cov}\left(x_{j}, x_{k}\right)=E\left[\left(x_{j}-\mu_{j}\right)\left(x_{k}-\mu_{k}\right)\right] \\
& \hat{\operatorname{Cov}}\left(x_{j}, x_{k}\right)=\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i j}-\bar{x}_{j}\right)\left(x_{i l}-\bar{x}_{l}\right)
\end{aligned}
$$

## Covariance Matrix

The covariance is thus a matrix:

$$
\Sigma=\left[\begin{array}{cccc}
\sigma_{11} & \sigma_{12} & \cdots & \sigma_{1 q} \\
\sigma_{21} & \sigma_{11} & & \vdots \\
\vdots & & \ddots & \vdots \\
\sigma_{q 1} & \cdots & \cdots & \sigma_{q q}
\end{array}\right]
$$

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

## Sample Covariance Matrix

And is estimated by the sample covariance matrix: $\qquad$

$$
\mathrm{S}=\left[\begin{array}{cccc}
s_{11} & s_{12} & \cdots & s_{1 q} \\
s_{21} & s_{11} & & \vdots \\
\vdots & & \ddots & \vdots \\
s_{q 1} & \cdots & \cdots & s_{49}
\end{array}\right]=\frac{\sum_{i=1}^{n}\left(\mathrm{X}_{i}-\overline{\mathrm{x}}\right)\left(\mathrm{X}_{i}-\overline{\mathrm{x}}\right)^{T}}{n-1}
$$

Where $\mathrm{x}_{i}=\left[\begin{array}{c}x_{i n} \\ \vdots \\ x_{i n}\end{array}\right]$ is the $i^{\text {th }}$ observation.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$


The Sample Correlation Matrix can be written as:

$$
\mathrm{R}=\mathrm{D}^{-1 / 2} \mathrm{SD}^{-1 / 2}
$$

Where $\mathrm{D}^{-1 / 2}$ is the matrix with $1 / s_{\mathrm{i}}$ on the diagonals.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$


