STAT 530 – Homework 10

The computer code and output from SAS for the following problems are provided below. Equivalent code and output from R will be provided early next week.

The data used for the first portion of this homework is from G.C. McDonald and J.A. Ayers (1978) as found in Rasmey and Schafer (1002). It can be found at:

http://www.stat.sc.edu/~habing/courses/data/sascity.txt

It contains the following 16 quantitative variables for each of 60 cities:

PRECIP - average annual precipitation in inches JANTEMP - average January temperature JULYTEMP - average July temperatures OVER65- percent of population over age 65 HOUSE - average population per household EDUC - median educational attainment in years SOUND - percentage of housing that was judged to be sound DENSITY - population density per square mile NONWHITE - percent non-white WHITECOL - Percent employed in white-collar occupations POOR - percent below the poverty line HC - relative pollution potential of hydrocarbons NOX - relative pollution potential of nitrogen oxide SO2 - relative pollution potential of sulphur dioxides HUMIDITY - average annual humidity MORTAL - mortality rate per 100,000 CITY - cities abbreviated name

A canonical correlation analysis was conducted with the seven of the "environmental variables" as one group and nine "demographic variables" as the other using the following code.

```
PROC CANCORR DATA=city VPREFIX=envir WPREFIX=people ALL;
VAR PRECIP JANTEMP JULYTEMP HC NOX SO2 HUMIDITY;
WITH MORTAL OVER65 HOUSE EDUC SOUND DENSITY NONWHITE WHITECOL POOR;
RUN;
```

The major excerpts from the output are as follows:

		The CANCORR Pro	ocedure		
	VAR	Variables	7		
	WITH	Variables	9		
	Obse	rvations	60		
	Canon	ical Correlatio	on Analysis		
		Adjusted	Approximate	Squared	
	Canonical	Canonical	Standard	Canonical	
(Correlation	Correlation	Error	Correlation	
1	0.922897	0.903014	0.019302	0.851740	
2	0.810515	0.767463	0.044663	0.656934	
3	0.610850	0.498803	0.081611	0.373137	
4	0.520954	0.452388	0.094857	0.271393	
5	0.368551	0.263663	0.112505	0.135830	
6	0.252849	0.177047	0.121866	0.063933	
7	0.139741	0.100686	0.127647	0.019527	

					Test of H	HO: The canoni	cal co	rrelati	ions in
	Η	Eigenvalues	of Inv(E)*H	ł	the current	row and all	that f	follow a	are zero
		= CanRsq/	(1-CanRsq)						
					Likelihood	Approximate			
	Eigenvalue	Difference	Proportion	Cumulative	Ratio	F Value N	um DF	Den DF	Pr > F
1	5.7449	3.8300	0.6475	0.6475	0.01842512	4.16	63	253.92	<.0001
2	1.9149	1.3196	0.2158	0.8633	0.12427539	2.48	48	225.48	<.0001
3	0.5952	0.2228	0.0671	0.9304	0.36224921	1.53	35	195.93	0.0383
4	0.3725	0.2153	0.0420	0.9723	0.57787662	1.17	24	165.17	0.2751
5	0.1572	0.0889	0.0177	0.9901	0.79312528	0.78	15	132.91	0.7019
б	0.0683	0.0484	0.0077	0.9978	0.91778827	0.54	8	98	0.8261
7	0.0199		0.0022	1.0000	0.98047255	0.33	3	50	0.8023

The CANCORR Procedure

Canonical Structure

Correlations Between the VAR Variables and Their Canonical Variables

	envirl	envir2	envir3	envir4	envir5	envir6	envir7
PRECIP	0.1240	0.8138	-0.3682	0.2158	-0.1449	-0.3175	-0.1353
JANTEMP	-0.9031	0.2668	-0.0509	-0.2819	-0.1387	0.0175	-0.1081
JULYTEMP	-0.4946	0.4600	-0.1942	0.6244	0.2546	-0.1414	0.1774
HC	-0.2812	-0.1230	0.3676	-0.7683	0.2144	0.0484	0.3633
NOX	-0.2261	-0.0142	0.3975	-0.7485	0.2253	0.1727	0.3872
SO2	0.1820	0.3923	0.8048	-0.0264	0.0989	0.3870	0.0706
HUMIDITY	0.0946	-0.1236	-0.0934	-0.3914	0.1827	0.0969	-0.8781
	Correlations	Between the	e WITH Varia	bles and Thei	ir Canonical	Variables	
	people1	people2	people3	people4	people5	people6	people7
MORTAL	0.1902	0.8181	0.1956	0.2528	0.1783	0.3695	-0.1503
OVER65	0.6002	0.0331	-0.1386	-0.4950	-0.4013	-0.1964	0.1115
HOUSE	0.1717	0.1913	-0.1738	0.7324	0.1061	-0.0204	-0.0098
EDUC	-0.2318	-0.6104	-0.0853	-0.4229	0.2617	0.2748	-0.1643
SOUND	-0.0492	-0.4646	0.5452	-0.5534	-0.1712	0.0532	-0.0666
DENSITY	0.1492	0.2197	0.6501	-0.0134	-0.0632	0.1308	0.6505
NONWHITE	-0.4327	0.6944	-0.0084	0.2458	0.4372	0.0351	-0.0710
WHITECOL	-0.3481	-0.3098	0.1750	-0.1321	0.0740	0.0100	-0.3090
POOR	-0.5302	0.6667	-0.4413	0.2514	-0.0670	0.0274	0.0751

- 1) How many of the canonical relationships are statistically significant at an α =0.05 level?
- 2) If an r^2 of 0.10 or higher is used as a cut-off for practical importance then how many of the canonical relationships are practically important?
- 3) Briefly describe the first "environmental" canonical variate and the first "demographic" canonical variate in terms of the original variables.

The data set analyzed below is from Feynman (1988) and is reported in Ramsey (1997). It concerns the relationship between the temperature at the time the space shuttle was launched and whether or not an O-ring seal on the space shuttle failed (a 1 indicates a failure and a 0 indicates a successful launch).

DATA C	pring;				
		fail @@	D;		
CARDS	;				
53	1	56	1	57	1
63	0	66	0	67	0
67	0	67	0	68	0
69	0	70	0	70	1
70	1	70	1	72	0
73	0	75	0	75	1
76	0	76	0	78	0
79	0	80	0	81	0
;					
PROC I	LOGIST	IC DATA	A=oring	J DESCEN	DING;
MODEL	fail	= temp	/LACKF	'IT;	
RUN;					

	The LOGISTIC Procedure Testing Global Null Hypothesis: BETA=0						
	Test		Chi-Square	DF Pr	> ChiSq		
	Likelihood		5.9441		0.0148		
	meter DF rcept 1	Estimate	Standard Error 5.7031	Chi-Square	-		
	Hosi	mer and Lem	eshow Goodne	ess-of-Fit Test			
	(Chi-Square 13.9837	DF 8	Pr > ChiSq 0.0822			

- 4) Use the likelihood ratio test to test the null hypothesis that temperature and O-ring failure are unrelated at the α =0.05 level against the alternative that temperature does predict O-ring failure.
- 5) What is the predicted chance that an O-ring would fail if the outside temperature was 29 degrees? (Note in the output that β_0 is the intercept and β_1 is the coefficient of temp).