Overview of the Two-way ANOVA

Factorial, With Replications, Balanced, Fixed Effect

Say there are two factors

Factor A has levels numbered i=1, ... A Factor C has levels numbered j=1, ...C and each combination has k=1, ... n replicatons.

The data could be laid out as follows:

(Note that the names we give to the factors don't matter! On page 343 of the text they use A and B... on 348 they use G and R.)

Easter A	Factor C							Means for
Tactor A ▼	j=	1	j⁼	=2	•••	j=	С	Tactor A ▼
<i>i</i> =1	$x_{111} \\ x_{112} \\ \vdots$	\overline{x}_{11}	$x_{121} \\ x_{122} \\ \vdots$	\overline{x}_{12}	•••	$\begin{array}{c} x_{1C1} \\ x_{1C2} \\ \vdots \end{array}$	\overline{x}_{lC}	\overline{A}_1
<i>i</i> =2	$ \begin{array}{c} x_{11n} \\ x_{211} \\ x_{212} \\ \vdots \\ x_{21n} \end{array} $	\overline{x}_{21}	$\begin{array}{c} x_{12n} \\ x_{221} \\ x_{222} \\ \vdots \\ x_{22n} \end{array}$	\overline{x}_{22}	•••	$\begin{array}{c c} x_{1Cn} \\ \hline x_{2C1} \\ x_{2C2} \\ \vdots \\ x_{2Cn} \end{array}$	\overline{x}_{2C}	\overline{A}_2
÷	:				·	:		÷
i=A	$\begin{array}{c} x_{A11} \\ x_{A12} \\ \vdots \\ x_{A1n} \end{array}$	\overline{x}_{A1}	$\begin{array}{c} x_{A21} \\ x_{A22} \\ \vdots \\ x_{A2n} \end{array}$	\overline{x}_{A2}	•••	$\begin{array}{c} x_{AC1} \\ x_{AC2} \\ \vdots \\ x_{ACn} \end{array}$	\overline{x}_{AC}	\overline{A}_A
Means for ► Factor C	Ē	1	Ō	$\overline{\overline{2}}$	•••	\overline{C}	- C	\overline{X}

The model equation for this two way ANOVA could be written as:

$$x_{ijk} = \mu_{\text{baseline}} + \alpha_i + \gamma_j + (\alpha \gamma)_{ij} + \varepsilon_{ijk}$$
 for $i=1,...A, j=1,...C$, and $k=1,...n$

where the X_{ijk} are the observations

 μ_{baseline} is the baseline

 $\alpha_1, \alpha_2, \dots \alpha_A$ are the main effects for the levels of factor A

 γ_1 , γ_2 , ..., γ_C are the main effects for the levels of factor C

 $(\alpha\gamma)_{11}, (\alpha\gamma)_{12}, \dots, (\alpha\gamma)_{21}, \dots, (\alpha\gamma)_{AC}$ are the interactions for the combinations of A and C

and the $\mathbf{\epsilon}_{ijk}$ are the errors that satisfy the conditions of mean equal to 0, equal variances, normality, and independence

The basic ANOVA table could then be written as:

Source	SS	df	MS	F
Between	$SS_{bet} = \sum_{i=1}^{A} \sum_{j=1}^{C} \sum_{k=1}^{n} (\bar{x}_{ij} - \bar{x})^2$	AC-1	$MS_{bet} = \frac{SS_{bet}}{AC - 1}$	$F = \frac{MS_{bet}}{MS_{wit}}$
► Factor A	$SS_A = \sum_{i=1}^{A} \sum_{j=1}^{C} \sum_{k=1}^{n} (\overline{A_i} - \overline{x})^2$	A-1	$MS_A = \frac{SS_A}{A-1}$	$F = \frac{MS_A}{MS_{wit}}$
► Factor C	$SS_C = \sum_{i=1}^{A} \sum_{j=1}^{C} \sum_{k=1}^{n} (\overline{C}_j - \overline{x})^2$	C-1	$MS_C = \frac{SS_C}{C-1}$	$F = \frac{MS_C}{MS_{wit}}$
► AC Interaction	$SS_{AC} = SS_{bet} - SS_A - SS_C$	(AC-1)-(A-1)-(C-1) = (A-1)(C-1)	$MS_{AC} = \frac{SS_{AC}}{(A-1)(C-1)}$	$F = \frac{MS_{AC}}{MS_{wit}}$
Within	$SS_{wit} = \sum_{i=1}^{A} \sum_{j=1}^{C} \sum_{k=1}^{n} (x_{ijk} - \overline{x}_{ij})^2$	ACn-AC	$MS_{bet} = \frac{SS_{bet}}{ACn - AC}$	
Total	$SS_{tot} = \sum_{i=1}^{A} \sum_{j=1}^{C} \sum_{k=1}^{n} (x_{ijk} - \bar{x})^2$	ACn-1		

The formulas in this ANOVA table can be simplified to the following:

Source	SS	df	MS	F
Between	$SS_{bet} = n \sum_{i=1}^{A} \sum_{j=1}^{C} (\overline{x}_{ij} - \overline{x})^2$	AC-1	$MS_{bet} = \frac{SS_{bet}}{AC - 1}$	$F = \frac{MS_{bet}}{MS_{wit}}$
► Factor A	$SS_A = nC\sum_{i=1}^{A} (\overline{A_i} - \overline{x})^2$	A-1	$MS_A = \frac{SS_A}{A-1}$	$F = \frac{MS_A}{MS_{wit}}$
► Factor C	$SS_C = nA\sum_{j=1}^C (\overline{C}_j - \overline{x})^2$	C-1	$MS_C = \frac{SS_C}{C-1}$	$F = \frac{MS_C}{MS_{wit}}$
► AC Interaction	$SS_{AC} = n \sum_{i=1}^{A} \sum_{j=1}^{C} (\overline{x}_{ij} - \overline{A}_i - \overline{C}_j + \overline{x})^2$	AC-A-C+1 = (A-1)(C-1)	$MS_{AC} = \frac{SS_{AC}}{(A-1)(C-1)}$	$F = \frac{MS_{AC}}{MS_{wit}}$
Within	$SS_{wit} = \sum_{i=1}^{A} \sum_{j=1}^{C} \sum_{k=1}^{n} (x_{ijk} - \overline{x}_{ij})^2$	AC(n-1)	$MS_{bet} = \frac{SS_{bet}}{AC(n-1)}$	
Total	$SS_{tot} = \sum_{i=1}^{A} \sum_{j=1}^{C} \sum_{k=1}^{n} (x_{ijk} - \bar{x})^2$	ACn-1		

Notice that there are four F statistics (each of which has its own p-value). The null hypotheses tested by these F statistics are:

Between (Omnibus Test)	H ₀ : $\alpha_I = = \alpha_A$ and $\gamma_I = = \gamma_C$ and	$(\alpha \gamma)_{11} = (\alpha \gamma)_{12} = = (\alpha \gamma)_{21} = (\alpha \gamma)_{AC}$
Factor A (Factor A has no effect)	H ₀ : $\alpha_1 = \alpha_2 = \ldots = \alpha_A$	
Factor C (Factor C has no effect)	H ₀ : $\gamma_I = \gamma_2 = \ldots = \gamma_C$	
Interaction AC (No Interactions)	$H_0: (\alpha \gamma)_{11} = (\alpha \gamma)_{12} = = (\alpha \gamma)_{21} = (\alpha \gamma)_{21}$	/) _{AC}

The reason that these various *F*-tests test the hypotheses we want can be seen by looking at the expected values of the mean squares. If we write the model so that the baseline sets the α , γ , and interactions to have mean zero, then the expected mean squares can be written as:

$$E(MS_{bet}) = \sigma_{\mathcal{E}}^{2} + \frac{Cn}{AC - 1} \sum_{i=1}^{A} \alpha_{i}^{2} + \frac{An}{AC - 1} \sum_{j=1}^{C} \gamma_{i}^{2} + \frac{n}{AC - 1} \sum_{i=1}^{A} \sum_{j=1}^{C} (\alpha \gamma)_{ij}^{2}$$

$$E(MS_{A}) = \sigma_{\mathcal{E}}^{2} + \frac{Cn}{A - 1} \sum_{i=1}^{A} \alpha_{i}^{2}$$

$$E(MS_{C}) = \sigma_{\mathcal{E}}^{2} + \frac{An}{C - 1} \sum_{j=1}^{C} \gamma_{i}^{2}$$

$$E(MS_{AC}) = \sigma_{\mathcal{E}}^{2} + \frac{n}{(A - 1)(C - 1)} \sum_{i=1}^{A} \sum_{j=1}^{C} (\alpha \gamma)_{ij}^{2}$$

$$E(MS_{wit}) = \sigma_{\mathcal{E}}^{2}$$

So, to test that there is no effect due to factor A, we would need to cancel out the $\sigma_{\mathcal{E}}^2$ in the E(MS_A). We could do this by dividing the MS_A by the MS_{wit}, which is exactly what happens in the ANOVA table. The other tests are made similarly.

<u>Note 1:</u> The basic rules (how to make the MS and F) for higher-way ANOVA tables are the same as for the One-way ANOVA. The only major difference is that we are splitting up the SS_{bet} .

Note 2: The construction of a three-way ANOVA table works similarly to that of the above two-way table. There are a variety of books on ANOVA and design of experiments that give the formulas if you need them.

Note 3: The formulas in the ANOVA table above, and the argument about the F tests, <u>only work if the design is Factorial</u>, With Replications, Balanced, and Fixed Effect