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The model equation for a two-way balanced, factorial design, with replications can be written: 
yijk=µ+αi+γj+(αγ)ij+εijk for i=1,...A,  j=1,...C, and k=1,...n.  The α are the factor 1 levels, the γ are the 
factor 2 levels, the αγ are the interactions, and the ε are the errors.  The main F-test in the ANOVA table 
tests 
 

H0: ACCA )()(  and    and  1111 αγαγγγαα ====== ���  
  vs.       HA: at least one is not equal 
 
While the Type III (and Type I) sum of squares can be used to test the three parts of the above hypothesis 
separately.   
 
The reason that these various F-tests test the hypotheses we want can be seen by looking at the expected 
values of the mean squares.  If we write the model so that the α, γ, and interactions have mean zero, then 
the expected mean squares can be written as: 
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In order to test Aαα ==m1  we would normally find the F-statistic by dividing the MSA by the MSres.  In 
the case where the null hypothesis is true, this would be dividing something with expected value σ

 ε
 2, by 

something with expected value σ
 ε

 2  (note in the E(MSA) that all the αi are 0).   We would thus expect the 
F-value to be near 1, and we would fail to reject H0.  In the case where not all the αi are zero, the 
numerator would be σ

 ε
 2  plus at least one positive term (based on the αi squared).  We would thus expect 

the F-value to be greater than 1, and would have a chance to reject H0.  This works the same way for 
testing if factor 2 is significant, or if there are any significant interactions.  For the overall F-value from 
the ANOVA table, notice that the only way the numerator can have an expected value of σ

 ε
 2 is if all of 

factor 1, factor 2, and the interactions are zero.  Usually we don’t worry about these expected mean 
squares, since we know everything will work out ok.  The subject of this supplement, random effects, 
complicates matters though, and we will have to start paying attention to the expected mean squares. 
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The basic ANOVA problems we have dealt with so far are referred to as fixed effects models.  We are 
interested in these particular levels of the factors, and so test whether they are all equal to each other or 
not. Even if we accept that the effects of α1, α2, ... αA are all equal, we can make no conclusion about the 
other possible α values we chose not to include in our experiment. 
 
We can imagine a different situation however.  Say that the response y is the time it takes for rats to 
complete a maze.  We imagine that gender might have an effect, and so we set γ1=male and γ2=female.    
Our primary topic of interest though is the effect that different brands of rat feed have on their times.  We 
don’t have enough time or money to try all of the thousands of different brands of rat feed, so we will take 
a random sample of five brands.  The hypothesis we would like to test is no longer α1=α2=α3=α4=α5.  
Instead, we want to know whether the entire population of brands of rat feed all have the same effect.  
One way of writing this is to say we want to test whether σα

2=0, because if the variance of a population is 
zero, then they all have the same value.   This sampling of the αs we examine from all of the possible αs 
is what produces a random effects model. 
 
Because of the extra randomness in random effects models, the expected mean squares change.  For a 
one-way ANOVA, they would change from 
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for the fixed effect model to  
 

E(MSbet) = 22
ασεσ n+   E(MSwit) = 2
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for the random effects model.  Notice that F=MSbet/ MSwit   tests that the specific αi are equal for the fixed 
effect model, but tests that σα

2=0 for the random effects model!  It thus looks like the hypothesis doesn’t 
make any difference to which F statistic we use.   However, if we go to a two-way model things get more 
complicated.   
 
In a two-way ANOVA, we have to decide which effects we want to be random.  We could have both 
factors and the interactions be random effects.  We could also have just one of the factors be random.  In 
this case, called a mixed effects model, we then have to decide if we want the interactions to be random or 
not.  How exactly to treat the interactions is a rather complicated question, and even has options that could 
be described as being in between random and fixed!  In any case, if you have a two (or more)-way 
ANOVA with any random effects, you would be wise to talk to a statistical consultant to make sure you 
have chosen the correct options.  If you want to do more reading on your own, additional material can be 
found in: George W. Cobb, Introduction to Design and Analysis of Experiments, New York: Springer, 
1998, pages 554-608, or John Neter, et.al., Applied Linear Statistical Models, 4th Edition, Boston: 
McGraw-Hill, 1996, Chapter 24. 
 
In some cases (but not all!) once you have decided on a model, you can use the SAS output to determine 
what MS you need to use to construct the tests of hypotheses. 
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The SAS code below analyzes the data in Table 8-11 (page 365), taking the strain of rat to be a random 
effect.  That is, we are told that the two strains of rat were chosen from a large number of possible strains, 
and just happen to be called “Normal” and “Hypertensive”.    
 
DATA ksh;
INPUT strain $ site $ activity @@;
CARDS;
norm dct 62 norm dct 73 norm dct 58 norm dct 66
hyp dct 44 hyp dct 49 hyp dct 46 hyp dct 37
norm ccd 15 norm ccd 31 norm ccd 19 norm ccd 35
hyp ccd 8 hyp ccd 36 hyp ccd 11 hyp ccd 18
norm omcd 7 norm omcd 7 norm omcd 9 norm omcd 17
hyp omcd 19 hyp omcd 7 hyp omcd 15 hyp omcd 4
;

PROC GLM DATA=ksh ORDER=DATA;
CLASS strain site;
MODEL activity = strain site strain*site;
RANDOM strain;
RUN;

The line RANDOM contains a list of all of the effects (or interactions) that we want to treat as random.  In 
this case we have only put strain there.    The bottom of the SAS output then contains the formulas for the 
expected mean squares. 
 

The GLM Procedure

Source Type III Expected Mean Square

strain Var(Error) + 12 Var(strain) + Q(strain*site)

site Var(Error) + Q(site,strain*site)

strain*site Var(Error) + Q(strain*site)

In the SAS notation, Var(_factor name_) means simply the variance of that factor.  For balanced 
designs, Q(_factor name_) means some constant times the sum of those factor effects squared.  If we 
use straini to represent the effect of strain i, and sitej to represent tthe effect of site j, then the above output 
then says that 
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and, as always, we have 
 

E(MSres) = 2
εσ  

 
For E(MSsite) we don’t know from the output what constants multiply the sum of sitei

2 and (strain*site)ij
2; 

thus we can’t be certain that we would use them correctly.  Because the other two E(MS) only involve 
strain*site, and because the design is balanced, we know that those constants are the same. 
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We could thus test H0: 02 =strainσ  by forming F= MSstrain/ MSstrain*site .  This is because the two MS will 
have the same expected value if the null hypothesis is true.  The degrees of freedom would be the ones 
corresponding to the two MS that were used.   
 
   

Sum of
Source DF Squares Mean Square F Value Pr > F
Model 5 9242.37500 1848.47500 28.73 <.0001
Error 18 1158.25000 64.34722
Corrected Total 23 10400.62500

Source DF Type III SS Mean Square F Value Pr > F
strain 1 459.375000 459.375000 7.14 0.0156
site 2 8287.000000 4143.500000 64.39 <.0001
strain*site 2 496.000000 248.000000 3.85 0.0404

From the output, this would give F=459.375/248.000=1.8523 and degrees of freedom 1,2.  From table  
E-2, we see that this is much less than the value of 98.49 for α=0.05 and we fail to reject H0. 
 
This leads naturally to the question of what the p-value of 0.0156 (the one for strain in the Type III tests) 
is testing.  The Type III tests are always formed by taking the MS for that “source” and dividing it by the 
MSres;  in this case 7.14 = 459.375/64.34722.  The degrees of freedom are the ones that correspond to the 
df; in this case 1 and 18.    If we look at the E(MS) for these however, we find that this p-value is actually 
testing that both the variance of the strain effects is zero and that all of the interactions terms are equal.  
(Recall that we can tell this by simply comparing how the two expected mean squares differ.  In this case 
the quotient of the two will equal one only if the variance of the strain effects is zero, and all of the terms 
from the interactions are zero.) 
 
You are certainly not expected to become experts in random and fixed effects models, because they can 
become very complicated very quickly.  You should however be able to recognize when one of the main 
effects in your model will be random.  (If so, you will need to confer with a consultant or a reference to 
see what to do with the interactions.)  For balanced designs, like the above example, you should also be 
able to use the expected mean squares (that you are given) to test a particular hypothesis and to tell what 
hypotheses the Type III tests that SAS gives are testing. 


