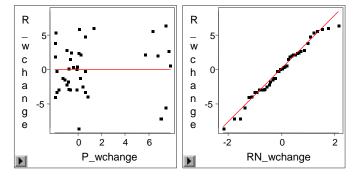
STAT 516 Quiz 7 Answers


Parar	neter Inforn	nation					
Parameter	Variab	le di	et				
1	Interce						
2 3	digeffic diet	Cho	NA/				
3 4	alet	Pla					
			Mod	el Equation			
wchange	= -	1.9652	+	0.0668	digeffic	+	4.883
F		Summary	of Fit				
Mean of Re	sponse	1.0952		R-Square	0.4349		
Root MSE		3.8541		Adj R-Sq	0.4059		
F		Ar	alysis	of Variance			
Source	DF	Sum of Sq	uares	Mean S	Square	F Stat	

Model Error C Total	2 39 41	445.8113 579.3078 1025.1190	222.9056 14.8540	15.01	<.0001			
Type III Tests								
Source	DF	Sum of Squares	Mean Square	F Stat	Pr > F			
digeffic diet	1	31.2630	31.2630	2.10	0.1548			
diet	1	61.5683	61.5683	4.14	0.0486			

Parameter Estimates								
Variable	diet	DF	Estimate	Std Error	t Stat	Pr > t	Tolerance	Var Inflation
Intercept		1	-1.9652	1.1865	-1.66	0.1057		0
digeffic diet		1	0.0668	0.0460	1.45	0.1548	0.3651	2.7393
diet	Chow	1	4.8836	2.3987	2.04	0.0486	0.3651	2.7393
	Plants	0	0					

P_3

Pr > F

Type III Tests							
Source	DF	Sum of Squares	Mean Square	F Stat	Pr > F		
digeffic diet	1	2.8655	2.8655	0.19	0.6652		
diet	1	22.1626	22.1626	1.47	0.2327		
digeffic*diet	1	6.7252	6.7252	0.45	0.5081		

- 1) Give the model equation for the equal slopes ANCOVA, identifying any parameters used.
- 2) Give the estimates for the parameters in the model equation in (1), including the estimated standard deviation of the errors.

$$y_{ij} = \beta_0 + \beta_1 x_{ij} + \tau_i + \epsilon_{ij}$$

where y_{ij} is the weight change of the j^{th} goose in diet group i (either plants or duck chow)

 β_0 is the intercept for the baseline group (-1.9652)

 β_1 is the slope for the digestive efficiency (0.0668)

 x_{ii} is the digestive efficiency of the j^{th} goose in diet group i (2.3987 for Chow, Plants is baseline)

 τ_i is the effect of being in diet group i (2.3987 for Chow, Plants is baseline)

 ε_{ii} is the error for the j^{th} goose in diet group i (root MSE is 3.8541)

3) Does the assumption of equal slopes ANCOVA seem to be met for this data set? How could you tell?

Yes, we fail reject the null hypothesis that the interactions are all zero (slopes are equal) with a p-value of 0.5081.

- 4) Which plot do we use to verify that the variances of the errors are constant? Briefly sketch what that plot would look like if the assumption isn't met. Residual vs. predicted. A fan shape that is wider on one end than the other would be one example, < or >.
- 5) Does diet appear to have an effect on the weight gain of baby snow geese? Yes. We reject the null hypothesis that $\tau_{chow} = \tau_{plant}$ at α =0.05 with a p-value of 0.0486. (You would say no if you used a=0.01.)
- 6) $\hat{\beta}_0 = 0$ and $\hat{\beta}_1 = 1$ If x=1, what is the estimated probability that Y=1? $1/(1+e^{-1})=.731$