## QUIZ 1

1) Under certain assumptions, the quotient of $\mathbf{2}$ means / 2 variances follows a $\underline{t} / \chi^{2} / \boldsymbol{F}$ distribution.
2) A $t$ with $\mathrm{df}=n-1$ is related to an $F$ with $\mathrm{df}=1$ and $n-1$ by the relationship $\underline{\mathbf{t} / \mathbf{2}=\boldsymbol{F}} / \underline{\mathbf{t}^{2}=\boldsymbol{F}} / \sqrt{t}=F$.

A linear regression is performed to predict housing prices (in \$) from the size (in square feet). Assume that all of the assumptions for a regression were met. The regression returned the following information:

Price $=58,000+32$ Area $\mathrm{MSE}=21,270,000 \quad$ Square root of MSE $=4,612 \quad$ p-value $=0.06$
3) What price does this equation estimate for a $1,000 \mathrm{sq}$. ft. house? $\mathbf{5 8 , 0 0 0}+\mathbf{3 2}(\mathbf{1 , 0 0 0})=\mathbf{\$ 9 0}, 000$
4) For each additional 100 square feet, how much does the price change by? $\mathbf{3 2 ( 1 0 0 ) = \$ 3 , 2 0 0}$
5) Would you be surprised if the real price was off by more than $\$ 15,000$ from the predicted price? Why or why not? Yes we should be surprised. The root-MSE is $\$ 4,612$, so a house that was $\$ 15,000$ off would be more than three-standard deviations away. If normality holds this would happen less than $\mathbf{0 . 3 \%}$ of the time.
6) At $\alpha=0.05$ would we accept or reject $H_{0}: \beta_{1}=0$ ? With a p-value of 0.06 we would accept (that is, fail to reject $H_{0}$ ). The p-value is not less than $\alpha$.

QUIZ 2

1) Complete the following partial ANOVA table for a regression that had 92 observations.

| Source | SS | df | MS | F | p-value |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Regression | 1673142 | 1 | 1673142 | $\ldots$ | 0.000 |  |
| Error | A | 90 | 1075 |  |  |  |
| Total | 1769888 | $\mathbf{B}$ |  |  |  |  |

A = Either $1,769,888-1,673,142=96,746$ or $90 * 1075=96,750$ (the difference is rounding error in the MS)
$B=$ Either $1+90=91$ or $92-1=91$
$\mathrm{C}=\mathbf{1 6 7 3 1 4 2} / \mathbf{1 0 7 5}=\mathbf{1 5 5 6 . 4 1 1}$
Questions 2-5 concern the attached SAS output for predicting the amount of protein in minnow larvae from the concentration of metals in the water.
2) For each extra unit of metals in the water, what is the predicted change to the protein level? slope=-0.2912
3) At $\alpha=0.05$, do you accept or reject the null hypothesis that $\beta_{1}=0$ ? Reject as p-value . $0001<\boldsymbol{\alpha}=\mathbf{0 . 0 5}$.
4) On average, how far do you expect each of the observations to be from the regression line? Root-MSE=22.2899
5) What percentage of the variation in the protein levels of the minnows is explained by the amount of metals in the water?
6) What is the correlation coefficient for the figure at right? -1


QUIZ 3

1. State the four assumptions the errors must satisfy in order for a regression analysis to be valid. The errors must: have mean zero (linear form is appropriate), constant variance, be normally distributed, and be independent.
2. Define what is meant by the $p$-value. The probability of observing a test-statistic at least as extreme as the one observed given that the null hypothesis is true.
3. Ninety-five percent of all future observations should fall within the bands of a $95 \%$ prediction interval/confidence interval for the mean . When comparing these two intervals, the confidence interval for the mean is the narrower / wider of the two.

Questions 4-6 use the SAS output described on the attached page.
4. State what $\mathrm{H}_{0}$ is being tested by the Type I test p-value of 0.3673 for Area. $\boldsymbol{\beta}_{\text {area }}=\mathbf{0}$ given non-native is included in the model.
5. State what $\mathrm{H}_{0}$ is being tested by the Type III test p -value of 0.3026 for Area. $\boldsymbol{\beta}_{\text {area }}=\mathbf{0}$ given non-native, elevation, distnear, and distsc are included in the model.
6. Circle all of the models that would be acceptable choices to predict the number of native species. Put a star next to the one that would be the best if you wanted to use the simplest possible model. Those in bold are definite, those in italics are borderline.



| M | Summary of Fit <br> 152.2000 | R-Square <br> Ad R-Sq | 0.5106 <br> 0.4894 |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Mean of Response |  |  |  |
| Root MSE |  |  |  |


| D | Type III Tests |  |  |  |  |
| :--- | :---: | :---: | ---: | :---: | :---: |
| Source | DF | Sum of Squares | Mean Square | F Stat | Pr $>$ F |
| Metals | 1 | 11924.6400 | 11924.6400 | 24.00 | $<.0001$ |


| $\boldsymbol{y}$ | Parameter Estimates |  |  |  |  |  |  |
| :--- | :--- | :--- | :---: | :---: | :---: | :---: | :---: |
| Variable | DF | Estimate | Std Error | t Stat | Pr $>\|t\|$ | Tolerance | Var Inflation |
| Intercept | 1 | 195.8800 | 9.9684 | 19.65 | $<.0001$ | 0 | 0 |
| Metals | 1 | -0.2912 | 0.0594 | -4.90 | $<.0001$ | 1.0000 | 1.0000 |




The data set Galapagos is from an article in the journal Science by Johnson and Raven. It concerns the number of native species on the various Galapagos Islands based on the number of non-native species (NonNative), the area of the island in $\mathrm{km}^{2}$ (Area), the elevation of the island in $m$ (Elev), the distance from the nearest other island in km (DistNear), and the distance from Santa Cruz in km (DistSC). The accompanying SAS output was generated from this data set, and you may assume the assumptions for performing regression are met.


| Source | DF | Sum of Squares | Mean Square | F Stat | Pr $>$ F |
| :--- | :--- | :---: | :---: | :---: | :---: |
| NonNative | 1 | 19339.7233 | 19339.7233 | 382.89 | $<.0001$ |
| Area | 1 | 42.6551 | 42.6551 | 0.84 | 0.3673 |
| Elev | 1 | 524.2878 | 524.2878 | 10.38 | 0.0036 |
| DistNear | 1 | 2.5511 | 2.5511 | 0.05 | 0.8241 |
| DistSC | 1 | 54.0551 | 54.0551 | 1.07 | 0.3112 |
| Type III Tests |  |  |  |  |  |
| Source | DF | Sum of Squares | Mean Square | F Stat | Pr $>$ F |
| NonNative | 1 | 5831.6001 | 5831.6001 | 115.46 | $<.0001$ |
| Area | 1 | 56.0507 | 56.0507 | 1.11 | 0.3026 |
| Elev | 1 | 554.4144 | 554.4144 | 10.98 | 0.0029 |
| DistNear | 1 | 34.0055 | 34.0055 | 0.67 | 0.4200 |
| DistSC | 1 | 54.0551 | 54.0551 | 1.07 | 0.3112 |


| Number in Model | R-Square Selection Method |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | R-Square | Adjusted R-Square | $C$ (p) | Variables in Model |
| 1 | 0.9133 | 0.9102 | 10.3452 | NonNative |
| 1 | 0.6253 | 0.6119 | 131.0884 | Elev |
| 1 | 0.3836 | 0.3616 | 232.4104 | Area |
| 1 | 0.0276 | -. 0071 | 381.6643 | DistSC |
| 1 | 0.0000 | -. 0357 | 393.2369 | DistNear |
| 2 | 0.9372 | 0.9326 | 2.3191 | Elev NonNative********** |
| 2 | 0.9153 | 0.9090 | 11.5007 | Area NonNative |
| 2 | 0.9137 | 0.9073 | 12.1833 | DistNear NonNative |
| 2 | 0.9133 | 0.9069 | 12.3417 | DistSC NonNative |
| 2 | 0.6489 | 0.6229 | 123.2110 | DistSC Elev |
| 2 | 0.6265 | 0.5989 | 132.5713 | Area Elev |
| 2 | 0.6254 | 0.5977 | 133.0412 | DistNear Elev |
| 2 | 0.3945 | 0.3496 | 229.8550 | Area DistSC |
| 2 | 0.3887 | 0.3434 | 232.2985 | Area DistNear |
| 2 | 0.0450 | -. 0257 | 376.3713 | DistNear DistSC |
| 3 | 0.9401 | 0.9332 | 3.1207 | Area Elev NonNative |
| 3 | 0.9379 | 0.9308 | 4.0141 | DistSC Elev NonNative |
| 3 | 0.9376 | 0.9304 | 4.1650 | DistNear Elev NonNative |
| 3 | 0.9160 | 0.9063 | 13.2280 | Area DistNear NonNative |
| 3 | 0.9153 | 0.9056 | 13.4967 | Area DistSC NonNative |
| 3 | 0.9141 | 0.9041 | 14.0277 | DistNear DistSC NonNative |
| 3 | 0.6666 | 0.6282 | 117.7638 | DistNear DistSC Elev |
| 3 | 0.6491 | 0.6086 | 125.1227 | Area DistSC Elev |
| 3 | 0.6268 | 0.5837 | 134.4600 | Area DistNear Elev |
| 3 | 0.4234 | 0.3569 | 219.7193 | Area DistNear DistSC |
| 4 | 0.9411 | 0.9317 | 4.6733 | Area DistSC Elev NonNative |
| 4 | 0.9402 | 0.9306 | 5.0702 | Area DistNear Elev NonNative |
| 4 | 0.9401 | 0.9305 | 5.1097 | DistNear DistSC Elev NonNative |
| 4 | 0.9166 | 0.9032 | 14.9764 | Area DistNear DistSC NonNative |
| 4 | 0.6674 | 0.6141 | 119.4555 | Area DistNear DistSC Elev |
| 5 | 0.9428 | 0.9308 | 6.0000 | Area DistNear DistSC Elev NonNa |

