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As discussed in Section 6.4 and at the beginning of Section 6.5, the F-test from the ANOVA table allows 
us to test the null hypothesis “The population means of all of the groups/treatments are equal.”  The 
alternate hypothesis is simply that “At least two are not equal.”  Often this isn’t what we want to know!   
 
Say we are comparing 20 possible treatments for a disease.  The ANOVA F-test (sometimes called the 
omnibus test), could only tell us that at least one of the treatments worked differently than the others.  We 
might, however, want to be able to rank the 20 from best to worst, and say which of these differences are 
significant.   We might want to compare all the treatments produced by one company to those of another, 
or maybe all the treatments based on one idea to those based on another.   
 
An obvious suggestion in each of these cases would be to simply do a large number of t-tests.  To rank the 
20 from best to worst, we could simply do a separate t-test for each possible comparison  (there are 190 of 
them).   To compare the two companies or two ideas, we could simply group all of the observations from 
the related methods together and use t-tests to see if they differ.  One difficulty with this is that the α-level 
(probability of a Type I error) may no longer be what we want it to be. 
 
 
Sidak’s Formula 
 
Stepping back from the ANOVA setting for a minute, say we wish to conduct one-sample t-tests on 
twenty completely independent populations.  If we set α=0.05 for the first test, that means that: 
 
  0.05 = α = P[reject H0 for test one | H0 is true for test one] 
 
We could write the same for the other nineteen populations as well.  If we are concerned about all twenty 
populations though, we might be more interested in the probability that we reject a true null hypothesis at 
all.  That is, 
 
αT = P[reject H0 for test one ∪  reject H0 for test two ∪ · · · ∪  reject H0 for test 20 | H0 is true for all tests] 
 
We call this quantity the family-wise (or experiment-wise) error rate.  The α for each individual test is 
called the comparison-wise error rate.  The family (or experiment), in this case, is made up of the twenty 
individual comparisons.   
 
Using the rules of probability, and the fact that we assumed the tests were independent for this example, 
we can calculate what αT would be if we used α=0.05 for the comparison-wise rate. 
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αT = P[reject H0 for 1 ∪  reject H0 for 2 ∪ · · · ∪  reject H0 for 20 | H0 is true for all tests] 
     = 1 − P[fail to reject H0 for 1 ∩ · · · ∩ fail to reject H0 for 20| H0 is true for all tests] 
     = 1 − P[fail to reject H0 for 1| H0 is true for all tests] · · · P[fail to reject H0 for 2| H0 is true for all tests]   
     = 1 − (1−α)(1−α)  · · · (1−α)  = 1 − (1−α)20 

     = 1 − (1−0.05)20  

       =  1 - 0.9520 

     ≈ 0.64 
 
The chance of making at least one error (αT ) isn’t 5%, it’s nearly 64%! 
 
If we replace the twenty tests with k tests, we get Sidak’s formula:  

 

αT = 1 − (1−α)k   
 
when the tests are independent. If we know what αT we want, we can solve for the needed α, to get: 
 

α = 1 − (1−αT)1/k   
 
If we wanted αT = 0.05, this formula would show us that we need to use an α of 0.00256 for each 
individual comparison! 
 
 
Bonferroni’s Formula  
 
In the case of ANOVA, the various tests will often not be independent.  If we want to conduct the t-tests 
to compare 20 possible medical treatments to each other, then clearly the comparison of 1 to 2, and 1 to 3 
will not be independent; they both contain treatment 1!   
 
The diagram below illustrates three possible situations that could occur for three tests: 
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The worst possible case in terms of αT would be if the type I errors for the individual tests were mutually 
exclusive.  In this case,   
 
αT = P[reject H0 for 1 ∪  reject H0 for 2 ∪ · · · ∪  reject H0 for k | H0 is true for all tests] 
     = P[reject H0 for 1 | H0 is true for all tests] + · · · +   P[reject H0 for k  | H0 is true for all tests] 
     = α + α + · · · α  = kα  to a maximum of one. 
 
or equivalently α = αT/k. This is Bonferroni’s formula. 
 
The best possible case in terms of αT would be if the type I errors for the individual tests all overlapped.  
In this case, αT = α.  
 
 
So far then... 
 
If we are performing a set of tests that are independent, then we can use Sidak’s adjustment to figure out 
what comparison-wise α we should be using. 
 
If the tests are not independent, then we have a choice.  We could be liberal and reject true null 
hypotheses too often (use αT = α) or be conservative and not reject the true null hypotheses as much as we 
should for our desired αT (use Bonferroni).  In terms of αT, we would be better being conservative then.   
The problem with this is that if we do not reject the true null hypotheses enough, we also will not reject 
the false ones enough! 
 
In the case of comparing the means of treatments, if we are liberal (using αT = α) we will “find” lots of 
differences that are there, but also lots of differences that aren’t real!  If we are conservative we won’t 
find lots of fake differences, but we will also miss the real ones.   
 
 
Fisher’s LSD 
 
One method for dealing with the fact that using αT = α is too liberal is called the Fisher Least Significant 
Difference (LSD) test (pages 254-256).    The idea is to only check to see if the means of groups are 
different if you reject the omnibus F-test.   This makes some obvious sense, if you fail to reject that there 
are no differences, why would you continue looking?  While this helps keep the number of false rejections 
down, it does have two downsides.  The first problem can occur when you fail to reject the overall 
ANOVA null hypothesis.   Because the omnibus test from the ANOVA table is looking at all of the 
groups at once, it will sometimes miss a difference between just two means.  It has to sacrifice power for 
each individual comparison in order to test them all at once.    The second problem can occur when we do 
reject the overall ANOVA null hypothesis and proceed to do the other comparisons of the group means.  
The omnibus test may have rejected because of a difference between only two means, but because using 
αT = α is liberal, we may find more differences than are really there.  Because of these two difficulties, 
Fisher’s LSD can’t be highly recommended.   
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The Holm Test 
 
The Holm test is a method for dealing with the fact that the Bonferroni procedure is too conservative.  The 
main idea comes from noticing that we always used the condition “H0 is true for all tests”, instead of 
using the condition that it was true only for the specific test we were doing.  The procedure behind the 
Holm test is to first find all of the p-values for all of the individual tests we were performing, and then 
rank them from smallest to largest.  Compare the smallest to α=αT/k.  If you fail to reject the null 
hypothesis for the first step, then you stop here.  If you do reject, then compare the next smallest to 
α=αT/(k-1).  Again, if you fail to reject the null hypothesis then you stop here; if you do reject continue on 
and use α=αT/(k-2).   (You do not need to check the omnibus F-test first, thus avoiding the first problem 
with Fisher’s LSD.) 
 
For example, say you have five hypotheses you are testing, you wanted αT =0.05, and you observed p-
values of 0.011, 0.751, 0.020, 0.030, and 0.001 respectively   
 
Test Number P-value Compare To Conclusion

5 0.001 0.05/5=0.01 reject H0 for test 5
1 0.011 0.05/4=0.0125 reject H0 for test 1 
3 0.020 0.05/3=0.0166 fail to reject for test 3
4 0.030 no comparison made fail to reject for test 4
2 0.751 no comparison made fail to reject for test 2 

 
Notice that Bonferonni’s test would only have rejected for test 5.  Using αT = α would have rejected for 
tests 5, 1, 3, and 4.  Thus the power of the Holm test is somewhere in between that of the Bonferroni 
procedure and Fisher’s LSD.  
 
While it is more powerful than Bonferroni’s method (it rejects more false H0’s) it still makes sure that αT 
is held to the desired level (unlike Fisher’s LSD).   Notice that if all the null hypotheses are true, we make 
an error if we reject any of them.  The chance that we reject any is the same as the chance that we reject 
the first, which is  αT/k.  We are thus safe for the same reason that Bonferroni’s formula works.  Now 
assume that we rejected the first null hypothesis because it was false.  There are only k-1 tests left, and so 
when we go to the second test we can start as if we were using Bonferroni’s formula with k-1 instead of k.  
And we continue in this way.  While this argument is not a proof that the Holm Test protects the family-
wise error rate αT, it should make the general idea fairly clear. 
 
While there are many other methods for making multiple comparisons (see pages 256-267), the Holm test 
performs fairly well compared to all of them, controls αT at the desired level, and is fairly easy to 
understand.  Because of this, it will be the method that we will focus on.     
 
 
Contrasts 
 
In order to perform any of these tests though, we must be able to tell SAS what we want done.  The 
building blocks for many of the SAS procedures that we will have SAS use are called contrasts.  They are 
discussed on pages 243-249 of the text.   
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where L̂ is normally distributed if the ANOVA assumptions are met.  Since we have the standard error for 
L̂ , we could make a confidence interval for L, or test the null hypothesis that L=0.  This is exactly what 
we will ask SAS to do in the examples below. 
 
 
Independence, Orthogonal Contrasts and Sidak’s Formula (an aside-note) 
 
As discussed on pages 246- 249, two contrasts are said to be orthogonal if the dot-product (sum of the 
cross products) of their coefficient vectors is zero.  The reason to care if two contrasts are orthogonal is 
that the estimates that go with a set of orthogonal contrasts are independent.   This will play an important 
roll in constructing the ANOVA table for factorial designs in Chapter 9. In the present situation though 
the test statistics will not be independent, however, as they both contain the same MSE in the 
denominator.  Because of this it is not technically appropriate to use Sidak’s formula even in this 
situation. 
 
 
Tying it All Together  
 
When we approach an ANOVA problem, there are three basic types of questions we could have in mind.  
 

1. Are there any differences between any of the group means?    
Choose α and simply use the F test from the ANOVA table (the omnibus test). 

 
2. Do the means of some particular groups differ from the means of some other particular 

groups?  Choose αT and come up with the contrasts you wish to test.  Find the p-values for the 
tests that go with these contrasts, and then use the Holm test procedure to see which are 
significant. 

 
3. What is the order of the group means, and which are significantly different from each other?   

Choose αT.   Make all of the contrasts that compare two means to each other, find their p-values, 
and use the Holm test procedure to see which are significantly different.  Then make a simple 
graph to display the result. 

 
It is important to note that you should decide which one of these questions you want to answer before you 
look at any of the output.  (If for some reason you don’t know why you are looking at the data in advance, 
tthen Scheffé’s method, discussed on pages 259-260, can be used.) Also, you should only pick one of 
these three questions.  (It doesn’t make sense to look at more than one of them, does it?)  Finally, in all 
cases remember to check the assumptions! 
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Example - Shrimp Larvae Diets 
 
The follow pages contain the code and output for answering each of the questions above for Example 6.6 
on pages 264-267.    The write up assumes that the desired family-wise error rate is αT=0.05.   
 
 
Enter the Data from Table 6.21 

The seven treatment groups can be broken into four experimental diets that contain a basal compound 
and: 
 
cafo_1  corn and fish oil in a 1:1 ratio 
calo_2  corn and linseed oil in a 1:1 ratio 
faso_3  fish and sunflower oil in a 1:1 ratio, or 
falo_4  fish and linseed oil in a 1:1 ratio 
 
And three standard diets that were: 
 
bc_5      the basal compound diet 
lma_6    live micro algae 
lmaa_7  live micro algae and Artemia  
 

DATA shrimp_weights;
INPUT diet $ weight @@;
CARDS;
cafo_1 47.0 cafo_1 50.9 cafo_1 45.2 cafo_1 48.9 cafo_1 48.2
calo_2 38.1 calo_2 39.6 calo_2 39.1 calo_2 33.1 calo_2 40.3
faso_3 57.4 faso_3 55.1 faso_3 54.2 faso_3 56.8 faso_3 52.5
falo_4 54.2 falo_4 57.7 falo_4 57.1 falo_4 47.9 falo_4 53.4
bc_5 38.5 bc_5 42.0 bc_5 38.7 bc_5 38.9 bc_5 44.6
lma_6 48.9 lma_6 47.0 lma_6 47.0 lma_6 44.4 lma_6 46.9
lmaa_7 87.8 lmaa_7 81.7 lmaa_7 73.3 lmaa_7 82.7 lmaa_7 74.8
;
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Check the Assumptions Using PROC INSIGHT and the Modified Levene test  

PROC INSIGHT;
OPEN shrimp_weights;
FIT weight=diet;
RUN;

PROC GLM DATA=shrimp_weights ORDER=DATA;
CLASS diet;
MODEL weight=diet;
MEANS diet / HOVTEST=BF;
RUN;

 
       
 
                                         The GLM Procedure 
 
                  Brown and Forsythe's Test for Homogeneity of weight Variance 
                         ANOVA of Absolute Deviations from Group Medians 
 
                                        Sum of        Mean 
                  Source        DF     Squares      Square    F Value    Pr > F 
 
                  diet           6     41.4549      6.9091       1.32    0.2793 
                  Error         28       146.1      5.2166 
 
 
 

From the residual vs. predicted plot, the means for each of the three groups seem to be near zero  (in fact, 
they must always be for a one-way ANOVA).   However, it is not clear from the residual vs. predicted 
plot if the variances of the errors for the seven groups are the same.  Using the modified Levene test we 
fail to reject that they are different with a p-value of 0.2793.  Finally, from the Q-Q plot of the residuals it 
appears that the distribution of the errors is approximately normally distributed, although its arguable at 
the ends. 
 
Since it is a randomized experiment the assumption of independence is also satisfied so that all four 
assumptions for the ANOVA are met in this case. 
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Possible Question 1:  Are there any differences between any of the group means?    
 
PROC GLM DATA=shrimp_weights ORDER=DATA;
CLASS diet;
MODEL weight=diet;
RUN;

 
 
                                        The GLM Procedure 
 
Dependent Variable: weight 
 
                                               Sum of 
       Source                      DF         Squares     Mean Square    F Value    Pr > F 
 
       Model                        6     5850.774857      975.129143      88.14    <.0001 
 
       Error                       28      309.792000       11.064000 
 
       Corrected Total             34     6160.566857 
 
 

As the p-value of <.0001 is less than 0.05 we reject the null hypothesis  
Η0:µcafo1= µcalo2 = µfaso3= µfalo4 = µbc5= µlma6 = µlmaa7 

and conclude that at least one of the diets has an effect that differs from the other six. 
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Possible Question 2:  One possible set of specific contrasts. 
 
Say that we are interested in the seven specific comparisons discussed on page 265:   
 

1. How the experimental diets compare to the standard diets on average.  (newold) 
2. How diets containing corn compare to those without corn. (corn) 
3. How diets containing fish oil compare to those without. (fish)  
4. How diets containing linseed oil compare to those without. (lin) 
5. How diets containing sunflower oil compare to those without. (sun) 
6. How diets containing micro algae compare to those without. (mic) 
7. How diets containing Artemia compare to those without. (art) 

 
The seven corresponding null hypotheses could be written as: 
 

1. Η0:  (µcafo1+µcalo2+µfaso3+µfalo4)/4 =  (µbc5+µlma6+µlmaa7)/3      [ ( 3 3 3 3 -4 -4 -4) / 12  ] 
2. Η0:  (µcafo1+µcalo2)/2 = (µfaso3+µfalo4+µbc5+µlma6+µlmaa7)/5 [ ( 5 5 -2 -2 -2 -2 -2) / 10 ] 
3. Η0:  (µcafo1+µfaso3+µfalo4)/3 = (µcalo2+µbc5+µlma6+µlmaa7)/4 [ ( 4 -3 4 4 -3 -3 -3) / 12 ] 
4. Η0:  (µcalo2+µfalo4)/2 = (µcafo1+µfaso3+µbc5+µlma6+µlmaa7)/5 [ (-2 5 -2 5 -2 -2 -2) / 10 ] 
5. Η0:   µfaso3 = (µcafo1+µcalo2 +µfalo4+µbc5+µlma6+µlmaa7)/6 [ (-1 -1 6 -1 -1 -1 -1) / 6 ] 
6. Η0:  (µlma6+µlmaa7)/2 = (µcafo1+µcalo2+µfaso3+µfalo4 +µbc5)/5 [ (-2 -2 -2 -2 -2 5 5) / 10 ] 
7. Η0:   µlmaa7 = (µcafo1+µcalo2+µfaso3+µfalo4+µbc5+µlma6)/6 [ (-1 -1 -1 -1 -1 -1 6) / 6 ] 

 
It is important that the data was entered in the correct order, and that we use the ORDER=DATA command. 
 
 
PROC GLM DATA=shrimp_weights ORDER=DATA;
CLASS diet;
MODEL weight=diet;
ESTIMATE ‘newold’ diet 3 3 3 3 -4 -4 -4 / divisor=12;
ESTIMATE ‘corn’ diet 5 5 -2 -2 -2 -2 -2 / divisor=10;
ESTIMATE ‘fish’ diet 4 -3 4 4 -3 -3 -3 / divisor=12;
ESTIMATE ‘lin’ diet -2 5 -2 5 -2 -2 -2 / divisor=10;
ESTIMATE ‘sun’ diet -1 -1 6 -1 -1 -1 -1 / divisor=6;
ESTIMATE ‘mic’ diet -2 -2 -2 -2 -2 5 5 / divisor=10;
ESTIMATE ‘art’ diet -1 -1 -1 -1 -1 -1 6 / divisor=6;
RUN;

 
 
 
                                                       Standard 
           Parameter                   Estimate           Error    t Value    Pr > |t| 
 
           newold                    -6.9783333      1.13613379      -6.14      <.0001 
           corn                     -12.3000000      1.24457222      -9.88      <.0001 
           fish                       1.0633333      1.13613379       0.94      0.3573 
           lin                       -8.0860000      1.24457222      -6.50      <.0001 
           sun                        3.9366667      1.60673582       2.45      0.0208 
           mic                       16.2740000      1.24457222      13.08      <.0001 
           art                       32.9400000      1.60673582      20.50      <.0001 
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Since we have seven tests that we are conducting, we need to determine which p-values to compare them 
to.  We could do this by hand as follows (note we have put the tests in order of p-value). 
 
Test T P-value Compare To Conclusion
art 20.50 <.0001 0.05/7=0.0071 reject H0
mic 13.08 <.0001 0.05/6=0.0083 reject H0
corn -9.88 <.0001 0.05/5=0.0100 reject H0
lin -6.50 <.0001 0.05/4=0.0125 reject H0
newold -6.14 <.0001 0.05/3=0.0167 reject H0
sun 2.45 0.0208 0.05/2=0.0250 reject H0
fish 0.94 0.3573 0.05 fail to reject H0
 
 

We could simultaneously make the following conclusions then: 
1. We have significant evidence to conclude that the average effect of the four experimental diets is 

different from the average effect of the three standard diets (we estimate it to be 6.98 lower) 
2. We have significant evidence to conclude that the average effect of the two diets with corn oil is 

different from the average effect of the five that don’t (we estimate it to be 12.3 lower)   
3. We do not have significant evidence to reject that the average effect of the three diets with fish oil 

are the same as the average effect of the four diets that don’t 
4. We have significant evidence to conclude that the average effect of the two diets with linseed oil is 

different from the average effect of the five that don’t (we estimate it to be 8.09 lower) 
5. We have significant evidence to conclude that the average effect of the diet with sunflower oil is 

different from the average effect of the six that don’t  (we estimate it to be 3.94 higher) 
6. We have significant evidence to conclude that the average effect of the two diets with micro algae 

is different from the average effect of the five that don’t  (we estimate it to be 16.27 higher) 
7. We have significant evidence to conclude that the effect of the diet with Artemia is different from 

the average effect of the six that don’t  (we estimate it to be 32.94 higher) 
 
 
PROC MULTTEST could also be used to produce the above t-test p-values and automatically adjust them 
with the Holm procedure (what SAS calls the “Stepdown Bonferroni” procedure).  This procedure will 
not produce the means that go with the contrasts however.   A sample of the code is contained below in 
answering the third possible question. 
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Possible Question 3:  What is the order of the group means, and which are 
significantly different from each other?    
 

We will use PROC MULTTEST to conduct this procedure.  (In reading the output, note that SAS also calls 
the Holm test the Stepdown Bonferroni test).  To compare the means for all of the groups, we first need to 
enter all of the contrasts for comparing the means.  There will always be (k choose 2) of them.  Because 
there are k=21 groups in this example, there will only be  such contrasts.  We could also have entered 
these in PROC GLM, but PROC MULTTEST will automatically adjust all of the α levels, so that we don’t 
have to!  
 
PROC MULTTEST DATA=shrimp_weights ORDER=DATA HOLM;
CLASS diet;
CONTRAST '1 vs. 2' 1 -1 0 0 0 0 0;
CONTRAST '1 vs. 3' 1 0 -1 0 0 0 0;
CONTRAST '1 vs. 4’ 1 0 0 -1 0 0 0;
CONTRAST '1 vs. 5’ 1 0 0 0 -1 0 0;
CONTRAST '1 vs. 6’ 1 0 0 0 0 -1 0;
CONTRAST '1 vs. 7’ 1 0 0 0 0 0 -1;
CONTRAST '2 vs. 3’ 0 1 -1 0 0 0 0;
CONTRAST '2 vs. 4’ 0 1 0 -1 0 0 0;
CONTRAST '2 vs. 5’ 0 1 0 0 -1 0 0;
CONTRAST '2 vs. 6’ 0 1 0 0 0 -1 0;
CONTRAST '2 vs. 7’ 0 1 0 0 0 0 -1;
CONTRAST '3 vs. 4’ 0 0 1 -1 0 0 0;
CONTRAST '3 vs. 5’ 0 0 1 0 -1 0 0;
CONTRAST '3 vs. 6’ 0 0 1 0 0 -1 0;
CONTRAST '3 vs. 7’ 0 0 1 0 0 0 -1;
CONTRAST '4 vs. 5’ 0 0 0 1 -1 0 0;
CONTRAST '4 vs. 6’ 0 0 0 1 0 -1 0;
CONTRAST '4 vs. 7’ 0 0 0 1 0 0 -1;
CONTRAST '5 vs. 6’ 0 0 0 0 1 -1 0;
CONTRAST '5 vs. 7’ 0 0 0 0 1 0 -1;
CONTRAST '6 vs. 7’ 0 0 0 0 0 1 -1;
TEST mean(weight);
RUN; 
 
 
 
 

The Multtest Procedure 
 

Continuous Variable Tabulations 
 

                                               Standard 
                         Variable    diet      NumObs       Mean        Deviation 

 
weight      cafo_1         5       48.0400        2.1267 
weight      calo_2         5       38.0400        2.8754 
weight      faso_3         5       55.2000        1.9812 
weight      falo_4         5       54.0600        3.9017 
weight      bc_5           5       40.5400        2.6857 
weight      lma_6          5       46.8400        1.6009 
weight      lmaa_7         5       80.0600        5.9777 
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                                            p-Values 
                                                                Stepdown 
                        Variable    Contrast           Raw    Bonferroni 
 
                        weight      1 vs. 2         <.0001        0.0006 
                        weight      1 vs. 3         0.0020        0.0132 
                        weight      1 vs. 4         0.0079        0.0315 
                        weight      1 vs. 5         0.0013        0.0106 
                        weight      1 vs. 6         0.5729        1.0000 
                        weight      1 vs. 7         <.0001        <.0001 
                        weight      2 vs. 3         <.0001        <.0001 
                        weight      2 vs. 4         <.0001        <.0001 
                        weight      2 vs. 5         0.2447        0.7340 
                        weight      2 vs. 6         0.0003        0.0026 
                        weight      2 vs. 7         <.0001        <.0001 
                        weight      3 vs. 4         0.5922        1.0000 
                        weight      3 vs. 5         <.0001        <.0001 
                        weight      3 vs. 6         0.0005        0.0041 
                        weight      3 vs. 7         <.0001        <.0001 
                        weight      4 vs. 5         <.0001        <.0001 
                        weight      4 vs. 6         0.0019        0.0132 
                        weight      4 vs. 7         <.0001        <.0001 
                        weight      5 vs. 6         0.0057        0.0285 
                        weight      5 vs. 7         <.0001        <.0001 
                        weight      6 vs. 7         <.0001        <.0001 
 

We could use the column labeled Raw, and compare the values to αΤ /21, αΤ /20, etc... after putting them 
in order.  Instead, however, the column labeled Stepdown Bonferroni has already been adjusted so that we 
can just compare those values directly to αΤ.  Thus, we would reject the null hypotheses that the first and 
second group have the same mean, but accept (fail to reject) the null hypothesis that the first and sixth 
group have the same mean.   Notice that at α=0.05 there are only three hypotheses we fail to reject, but 
there are many more at α=0.01. 
 
What way of presenting this would be to list the groups in order of their means, and have them share 
letters if they cannot be said to be significantly different. 
 
Group Mean Cortisol Groupings at a=0.05 Groupings at a=0.01
lmaa_7 80.0600 A A

faso_3 55.2000 B B
B B

falo_4 54.0600 B C B
C B

cafo_1 48.0400 C C B D
C C D

lma_6 46.8400 C C D
D

bc_5 40.5400 D E D
D E

calo_2 38.0400 D E

Note: Notice it is possible in some cases to have the groups overlap!!  Remember, if we fail to reject we 
are not saying the means are equal, merely that we don’t have enough evidence to say which are different 
for sure  (α=0.01 means you need more evidence to say they are different than α=0.05). 


