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The F-test from the ANOVA table allows us to test the null hypothesis “The population means of all of 
the groups/treatments are equal.”  The alternate hypothesis is simply that “At least two are not equal.”  
Often this isn’t what we want to know!   
 
Say we are comparing 20 possible treatments for a disease.  The ANOVA F-test (sometimes called the 
omnibus test), could only tell us that at least one of the treatments worked differently than the others.  We 
might, however, want to be able to rank the 20 from best to worst, and say which of these differences are 
significant.   We might want to compare all the treatments produced by one company to those of another, 
or maybe all the treatments based on one idea to those based on another.   
 
An obvious suggestion in each of these cases would be to simply do a large number of t-tests.  To rank the 
20 from best to worst, we could simply do a separate t-test for each possible comparison  (there are 190 of 
them).   To compare the two companies or two ideas, we could simply group all of the observations from 
the related methods together and use t-tests to see if they differ.  One difficulty with this is that the α-level 
(probability of a Type I error) may no longer be what we want it to be. 
 
 
Sidak’s Formula 
 
Stepping back from the ANOVA setting for a minute, say we wish to conduct one-sample t-tests on 
twenty completely independent populations.  If we set α=0.05 for the first test, that means that: 
 
  0.05 = α = P[reject H0 for test one | H0 is true for test one] 
 
We could write the same for the other nineteen populations as well.  If we are concerned about all twenty 
populations though, we might be more interested in the probability that we reject a true null hypothesis at 
all.  That is, 
 
αT = P[reject H0 for test one ∪  reject H0 for test two ∪ · · · ∪  reject H0 for test 20 | H0 is true for all tests] 
 
We call this quantity the family-wise (or experiment-wise) error rate.  The α for each individual test is 
called the comparison-wise error rate.  The family (or experiment), in this case, is made up of the twenty 
individual comparisons.   
 
Using the rules of probability, and the fact that we assumed the tests were independent for this example, 
we can calculate what αT would be if we used α=0.05 for the comparison-wise rate. 
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αT = P[reject H0 for 1 ∪  reject H0 for 2 ∪ · · · ∪  reject H0 for 20 | H0 is true for all tests] 
     = 1 − P[fail to reject H0 for 1 ∩ · · · ∩ fail to reject H0 for 20| H0 is true for all tests] 
     = 1 − P[fail to reject H0 for 1| H0 is true for all tests] · · · P[fail to reject H0 for 2| H0 is true for all tests]   
     = 1 − (1−α)(1−α)  · · · (1−α)  = 1 − (1−α)20 

     = 1 − (1−0.05)20  

       =  1 - 0.9520 

     ≈ 0.64 
 
The chance of making at least one error (αT ) isn’t 5%, it’s nearly 64%! 
 
If we replace the twenty tests with k tests, we get Sidak’s formula:  

 

αT = 1 − (1−α)k   
 
when the tests are independent. If we know what αT we want, we can solve for the needed α, to get: 
 

α = 1 − (1−αT)1/k   
 
If we wanted αT = 0.05, this formula would show us that we need to use an α of  0.00256 for each 
individual comparison! 
 
 
Bonferroni’s Formula  
 
In the case of ANOVA, the various tests will often not be independent.  If we want to conduct the t-tests 
to compare 20 possible medical treatments to each other, then clearly the comparison of 1 to 2, and 1 to 3 
will not be independent; they both contain treatment 1!   
 
The diagram below illustrates three possible situations that could occur for three tests: 
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The worst possible case in terms of αT would be if the type I errors for the individual tests were mutually 
exclusive.  In this case,   
 
αT = P[reject H0 for 1 ∪  reject H0 for 2 ∪ · · · ∪  reject H0 for k | H0 is true for all tests] 
     = P[reject H0 for 1 | H0 is true for all tests] + · · · +   P[reject H0 for k  | H0 is true for all tests] 
     = α + α + · · · α  = kα  to a maximum of one. 
 
or equivalently α = αT/k. This is Bonferroni’s formula. 
 
The best possible case in terms of αT would be if the type I errors for the individual tests all overlapped.  
In this case, αT = α.  
 
 
So far then... 
 
If we are performing a set of tests that are independent, then we can use Sidak’s adjustment to figure out 
what comparison-wise α we should be using. 
 
If the tests are not independent, then we have a choice.  We could be liberal and reject true null 
hypotheses too often (use αT = α) or be conservative and not reject the true null hypotheses as much as we 
should for our desired αT (use Bonferroni).  In terms of αT, we would be better being conservative then.   
The problem with this is that if we do not reject the true null hypotheses enough, we also will not reject 
the false ones enough! 
 
In the case of comparing the means of treatments, if we are liberal (using αT = α) we will “find” lots of 
differences that are there, but also lots of differences that aren’t real!  If we are conservative we won’t 
find lots of fake differences, but we will also miss the real ones.   
 
 
Fisher’s LSD 
 
One method for dealing with the fact that using αT = α is too liberal is called the Fisher Least Significant 
Difference (LSD) test.    The idea is to only check to see if the means of groups are different if you reject 
the omnibus F-test.   This makes some obvious sense, if you fail to reject that there are no differences, 
why would you continue looking?  While this helps keep the number of false rejections down, it does 
have two downsides.  The first problem can occur when you fail to reject the overall ANOVA null 
hypothesis.   Because the omnibus test from the ANOVA table is looking at all of the groups at once, it 
will sometimes miss a difference between just two means.  It has to sacrifice power for each individual 
comparison in order to test them all at once.    The second problem can occur when we do reject the 
overall ANOVA null hypothesis and proceed to do the other comparisons of the group means.  The 
omnibus test may have rejected because of a difference between only two means, but because using αT = 
α is liberal, we may find more differences than are really there.  Because of these two difficulties, Fisher’s 
LSD can’t be highly recommended. 
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The Holm Test 
 
The Holm test is a method for dealing with the fact that the Bonferroni procedure is too conservative.  The 
main idea comes from noticing that we always used the condition “H0 is true for all tests”, instead of 
using the condition that it was true only for the specific test we were doing.  The procedure behind the 
Holm test is to first find all of the p-values for all of the individual tests we were performing, and then 
rank them from smallest to largest.  Compare the smallest to α=αT/k.  If you fail to reject the null 
hypothesis for the first step, then you stop here.  If you do reject, then compare the next smallest to 
α=αT/(k-1).  Again, if you fail to reject the null hypothesis then you stop here; if you do reject continue on 
and use α=αT/(k-2).   (You do not need to check the omnibus F-test first, thus avoiding the first problem 
with Fisher’s LSD.) 
 
For example, say you have five hypotheses you are testing, you wanted αT =0.05, and you observed p-
values of 0.011, 0.751, 0.020, 0.030, and 0.001 respectively   
 
Test Number P-value Compare To Conclusion

5 0.001 0.05/5=0.01 reject H0 for test 5
1 0.011 0.05/4=0.0125 reject H0 for test 1 
3 0.020 0.05/3=0.0166 fail to reject for test 3
4 0.030 no comparison made fail to reject for test 4
2 0.751 no comparison made fail to reject for test 2 

 
Notice that Bonferonni’s test would only have rejected for test 5.  Using αT = α would have rejected for 
tests 5, 1, 3, and 4.  Thus the power of the Holm test is somewhere in between that of the Bonferroni 
procedure and Fisher’s LSD.  
 
While it is more powerful than Bonferroni’s method (it rejects more false H0’s) it still makes sure that αT 
is held to the desired level (unlike Fisher’s LSD).   Notice that if all the null hypotheses are true, we make 
an error if we reject any of them.  The chance that we reject any is the same as the chance that we reject 
the first, which is  αT/k.  We are thus safe for the same reason that Bonferroni’s formula works.  Now 
assume that we rejected the first null hypothesis because it was false.  There are only k-1 tests left, and so 
when we go to the second test we can start as if we were using Bonferroni’s formula with k-1 instead of k.  
And we continue in this way.  While this argument is not a proof that the Holm Test protects the family-
wise error rate αT, it should make the general idea fairly clear. 
 
While there are many other methods for making multiple comparisons (see pages 307-313), the Holm test 
performs fairly well compared to all of them, controls αT at the desired level, and is fairly easy to 
understand.  Because of this, it will be the method that we will focus on.     
 
 
Contrasts 
 
In order to perform any of these tests though, we must be able to tell SAS what we want done.  The 
building blocks for many of the SAS procedures that we will have SAS use are called contrasts. 
 
A contrast is simply a linear function of the various treatment/group means whose coefficients sum to 
zero.  Consider the example presented in Table 7-4 on pages 296-298.  Here we have three groups: 
1=healthy, 2=nonmelancholic-depressed, and 3=melancholic-depressed.  Each of these three groups has 
an associated parameter: µ1 = µh, µ2= µnonm-dep, and µ3 = µm-dep.   Examples of contrasts here would 
include: 
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            L1 = 0·µ1 +  1 ·µ2 - 1·µ3       written in SAS as  0   1    -1 
            L2 = 1·µ1 +  0 ·µ2 - 1·µ3   1   0    -1 
            L3 = 1·µ1  -  1 ·µ2 + 0·µ3 1  -1     0         

L4 = 1·µ1 -  ½ ·µ2 - ½·µ3     1 -0.5 -0.5 
 
Notice that in each case the coefficients sum to 0:  0+1-1=0, 1+0-1=0, 1+0-1=0, 1-½-½=0.  The theory 
says that we can estimate the contrasts using: 
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where the ai are the coefficients for the contrast, and the estimate L̂ is normally distributed if the ANOVA 
assumptions are met.  Since we have the standard error for L̂ , we could make a confidence interval for L, 
or test the null hypothesis that L=0.  The question though, is “why would we want to?” 
 
If we look at L1 we simply have the difference of the means of the second and third groups (the non-
melancholic depressed and the melancholic depressed).  It thus appears as if the contrast L1 is simply 
comparing the means of those two groups.   If we use the estimate of L and its standard error to construct 
a t-test of the hypothesis L1=0, we get:   
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This is exactly the two-sample t-test for H0: µ1-µ2=0 except that we are using MSres instead of the pooled 
variance estimate!  There is also an F-test for this contrast that tests exactly the same hypothesis (the F-
value will always be the square of the t-value.) 
 
If we return to the other three contrasts, L2 is simply testing whether the non-depressed and melancholic 
depressed differ.  Similarly L3 is simply testing whether the healthy and nonmelancholic-depressed differ.  
The last contrast is somewhat more complicated.  It is comparing the mean of the healthy to the average 
of the means of the two depressed groups.  That is, it is comparing non-depressed to depressed.   
 
 
Independence, Orthogonal Contrasts and the Holm-Sidak Test (an aside-note) 
 
Two contrasts are said to be orthogonal if the dot-product of their coefficient vectors is zero.  So, two  

contrasts  ∑=
=

k

i
iiaL

1
µ and ∑=

=

k

i
iibL

1
µ would be orthogonal if .0

1
=∑

=

k

i
ibai   In the above example then,  

L1 and L4 would be orthogonal, but no other pair of these contrasts would be.  The reason to care if two 
contrasts are orthogonal is that the estimates that go with a set of orthogonal contrasts are independent.  
The test statistics will not be, however, as they both contain the MSres in the denominator.  There is a 
modification of the Holm test that uses Sidak’s formula instead of Bonferroni’s.  However, because the 
statistics won’t be independent, and there really isn’t much difference between the values given by 
Bonferroni’s formula and Sidak’s formula, we will just use the basic Holm test. 
 



 6

Tying it All Together  
 
When we approach an ANOVA problem, there are three basic types of questions we could have in mind.  
 

1. Are there any differences between any of the group means?    
Choose α and simply use the F test from the ANOVA table (the omnibus test). 

 
2. Do the means of some particular groups differ from the means of some other particular 

groups?  Choose αT and come up with the contrasts you wish to test.  Find the p-values for the 
tests that go with these contrasts, and then use the Holm test procedure to see which are 
significant. 

 
3. What is the order of the group means, and which are significantly different from each other?   

Choose αT.   Make all of the contrasts that compare two means to each other, find their p-values, 
and use the Holm test procedure to see which are significantly different.  Then make a simple 
graph to display the result. 

 
It is important to note that you should decide which one of these questions you want to answer before you 
look at any of the output.  (If for some reason you don’t know why you are looking at the data in advance, 
something called Scheffé’s method can be used.) Also, you should only pick one of these three questions.  
(It doesn’t make sense to look at more than one of them, does it?)  Finally, in all cases remember to check 
the assumptions! 
 
 
Example - Hormones and Depression 
 
The follow pages contain the code and output for answering each of the questions above for the example 
on pages 296-298.    The write up assumes that the desired family-wise error rate is αT=0.05. 
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Enter the Data from Table 7.4  

DATA tab7p4;
INPUT group $ cort @@;
CARDS;
h 2.5 n 5.4 m 8.1
h 7.2 n 7.8 m 9.5
h 8.9 n 8.0 m 9.8
h 9.3 n 9.3 m 12.2
h 9.9 n 9.7 m 12.3
h 10.3 n 11.1 m 12.5
h 11.6 n 11.6 m 13.3
h 14.8 n 12.0 m 17.5
h 4.5 n 12.8 m 24.3
h 7.0 n 13.1 m 10.1
h 8.5 n 15.8 m 11.8
h 9.3 n 7.5 m 9.8
h 9.8 n 7.9 m 12.1
h 10.3 n 7.6 m 12.5
h 11.6 n 9.4 m 12.5
h 11.7 n 9.6 m 13.4

n 11.3 m 16.1
n 11.6 m 25.2
n 11.8
n 12.6
n 13.2
n 16.3

;



 8

Check the Assumptions Using PROC INSIGHT and the Modified Levene’s test  

PROC INSIGHT;
OPEN tab7p4;
FIT cort=group;
RUN;

PROC GLM DATA=tab7p4 ORDER=DATA;
CLASS group;
MODEL cort=group;
MEANS group / HOVTEST=BF;
RUN;

 
       
 
                                                   The GLM Procedure 
 
                                  Brown and Forsythe's Test for Homogeneity of cort Variance 
                                        ANOVA of Absolute Deviations from Group Medians 
 
                                                       Sum of        Mean 
                                 Source        DF     Squares      Square    F Value    Pr > F 
 
                                 group          2      6.5816      3.2908       0.48    0.6234 
                                 Error         53       365.9      6.9029 
 
 
 

From the residual vs. predicted plot, the means for each of the three groups seem to be near zero  (they 
must always be for a one-way ANOVA).   However, it is not clear from the residual vs. predicted plot if 
the variances of the errors for the three groups are the same.  Using the modified Levene test we fail to 
reject that they are different with a p-value of 0.6234.  Finally, from the Q-Q plot of the residuals it 
appears that the distribution of the errors is approximately normally distributed with the possible 
exception of two outliers.     
 
Assuming the experimental design satisfies the independence assumption, then all four assumptions for 
the ANOVA are met in this case. 
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Possible Question 1:  Are there any differences between any of the group means?    
 
PROC GLM DATA=tab7p4 ORDER=DATA;
CLASS group;
MODEL cort=group;
RUN;

 
 
                                            The GLM Procedure 

 
Dependent Variable: cort 
 
                                                              Sum of 
                      Source                      DF         Squares     Mean Square    F Value    Pr > F 
                      Model                        2     164.6742857      82.3371429       6.61    0.0027 
                      Error                       53     660.0200000      12.4532075 
                      Corrected Total             55     824.6942857 
 
 

As the p-value of 0.0027 is less than 0.05 we reject the null hypothesis that µh= µnonm-dep3 = µm-dep and 
conclude that at least one of the group cortisol means is different from the other two. 
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Possible Question 2:  One example of specific contrasts. 
 
Say that we have two research questions:   
 

1. We want to know if the mean cortisol level of the healthy patients differs from the average of the 
means of the two types of depressed individuals.   

 
2. We want to know if the mean cortisol level of the nonmelancholic depressed individuals differs 

from the mean level for the melancholic individuals.   
 
The two null hypotheses would thus be 
 
Hypothesis 1-   H0: µh= (µnonm-dep3 + µm-dep)/2 
Hypothesis 2-   H0: µnonm-dep3 = µm-dep 
 
These would correspond to contrasts 4 and 1 above.  Note that it is important that the data was entered in 
the correct order, and that we use the ORDER=DATA command. 
 
PROC GLM DATA=tab7p4 ORDER=DATA;
CLASS group;
MODEL cort=group;
ESTIMATE ‘h vs. (n and m)’ group 1 -0.5 -0.5;
ESTIMATE ‘n vs. m’ group 0 1 -1;
RUN;

 
                                                                      Standard 
                          Parameter                   Estimate           Error    t Value    Pr > |t| 
 
                          h vs. (n and m)          -2.90000000      1.04537094      -2.77      0.0076 
                          n vs. m                  -2.80000000      1.12156130      -2.50      0.0157 
 
 

As we have two tests, we compare the smallest p-value to αT/2=0.05/2=0.025.  In this case it is the p-
value for healthy vs. depressed, and the p-value of 0.0076 is smaller.  We thus reject the null hypothesis 
for this test and conclude that the mean cortisol level for healthy individuals is different from the average 
of the mean cortisol levels for the two types of depressed individuals.  In fact, we can estimate this 
difference and find that the healthy tend to have a cortisol level of 2.9 less than the average of the means 
for the other two groups.  (Compare to the bottom of Table 7-4 on page 297). 
 
Since we rejected the null hypothesis for the smallest p-value, we continue to the second of the two tests.  
We now compare the p-value of 0.0157 to  αT/1=0.05/1 = 0.05.  We can thus conclude that the 
nonmelancholic and melancholic individuals have significantly different mean cortisol levels.  We 
estimate that the nonmelancholic individuals level is 2.8 lower than that of the melancholic individuals. 
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Possible Question 3:  What is the order of the group means, and which are 
significantly different from each other?    
 

We will use PROC MULTTEST to conduct this procedure.  (In reading the output, note that SAS also calls 
the Holm test the Stepdown Bonferroni test).  To compare the means for all of the groups, we first need to 
enter all of the contrasts for comparing the means.  There will always be (k choose 2) of them.  Because 
there are only k=3 groups in this example, there will only be 3 such contrasts.  For k=10, there would have 
been 45.  We could also have entered these in PROC GLM, but PROC MULTTEST will automatically adjust 
all of the α levels, so that we don’t have to! 
 
PROC MULTTEST DATA=tab7p4 ORDER=DATA HOLM;
CLASS group;
CONTRAST 'h vs. n' 1 -1 0;
CONTRAST 'h vs. m' 1 0 -1;
CONTRAST 'n vs. m’ 0 1 -1;
TEST mean(cort);
RUN; 
 
 
                                                Continuous Variable Tabulations 
                                                                                   Standard 
                                    Variable    group    NumObs          Mean     Deviation 
 
                                    cort        h            16        9.2000        2.9305 
                                    cort        n            22       10.7000        2.7584 
                                    cort        m            18       13.5000        4.6742 
 
                                                           p-Values 
                                                                               Stepdown 
                                       Variable    Contrast           Raw    Bonferroni 
 
                                       cort        h vs. n         0.2014        0.2014 
                                       cort        h vs. m         0.0008        0.0025 
                                       cort        n vs. m         0.0157        0.0314 
 
 

We could use the column labeled Raw, and compare the values to αΤ /3, αΤ /2, and αΤ/1.  Instead, 
however, the column labeled Stepdown Bonferroni has already been adjusted so that we can just compare 
those values directly to αΤ.  Thus, we would reject the null hypotheses for healthy vs. melancholic, and 
nonmelancholic vs. melancholic.  We do not, however, have significant evidence to reject the null 
hypothesis for healthy vs. nonmelancholic. 
 
What way of presenting this would be to list the groups in order of their means, and have them share 
letters if they cannot be said to be significantly different. 
 
 Group Mean Cortisol Groupings

Healthy 9.2 A
Nonmelancholic Depressed 10.7 A
Melancholic Depressed 13.5 B

 
Note: It is possible in some cases to have the groups overlap!!  If nonmelancholic were more in the 
middle, we might not be able to say for certain it differed from either healthy or melancholic, even though 
melancholic and healthy clearly differed. 


