Part I:

1) The errors must be normally distributed, have mean zero, and equal variances at each treatment level, and must be independent.
2) The probability of observing a test statistic as extreme as the one observed, or more extreme, if the null hypothesis is true.

Part II:

1) $\mathbf{H}_{0}: \beta_{\text {walk }}=0$ given that the bank clerk speed is also included in the model
vs. $H_{A}: \beta_{\text {walk }} \neq 0$ given that the bank clerk speed is also included in the model where $\beta_{\text {walk }}$ is the coefficient for the average walking speed
2) $\mathbf{S S E}=\mathbf{9 5 1 . 6 3 8 9} \mathbf{- 2 1 2 . 8 2 6 4}=\mathbf{7 3 8 . 8 1 2 5} \quad \mathbf{d f}=\mathbf{3 5}-\mathbf{3}=\mathbf{3 2} \quad$ $\mathbf{M S E}=\mathbf{7 3 8 . 8 1 2 5} / \mathbf{3 2}=\mathbf{2 3 . 0 8 7 9}$
3)Chattanooga has the largest DFITTs (0.9755), we compare this to $2 \operatorname{sqrt}((\mathrm{~m}+1) / \mathrm{n})=2 \operatorname{sqrt}((3+1) / 36)=2 / 3$ and see that it would have a significant effect on the model.
3) The model with bank and walk has $\mathbf{C p}<\mathrm{k}+1$, has the fewest variables of any such model, and has the highest adjusted \mathbf{R}^{2}
4) $\mathrm{y}_{\mathrm{ijk}}=\mu_{\text {base }}+\alpha_{\mathrm{i}}+\gamma_{\mathrm{j}}+(\alpha \gamma)_{\mathrm{ij}}+\varepsilon_{\mathrm{ijk}}$
$\mathrm{y}_{\mathrm{ijk}}=$ the $\mathrm{k}^{\text {th }}$ observation in specialty i and city $\mathrm{j} \quad \mu_{\text {base }}=$ the baseline mean
$\alpha_{i}=$ the main effect due to specialty $i \quad \gamma_{j}=$ the main effect due to city j
$(\alpha \gamma)_{\mathrm{ij}}=$ the interaction due to specialty i and city $j \quad \varepsilon_{\mathrm{ijk}}=$ the error for the $\mathrm{k}^{\text {th }}$ observation in specialty i and city j
5) The treatment effects for Pediatrics and Diabetes \& Hypertension are equal. ($\gamma_{\text {Ped }}=\gamma_{\text {DnH }}$)
6) The interaction between specialty and city is not significant (\mathbf{p}-value $=\mathbf{0 . 9 8 7 7}$)
7) Modified Levene Test or Brown and Forsythe Test
8) No significant differance (\mathbf{p}-value $=\mathbf{0 . 5 3 6 8}$).
9) There is a significant effect (\mathbf{p}-value $=\mathbf{0 . 0 4 6 7}$) and the estimated average change is $\mathbf{- 0 . 0 3 6 4}$ for each additional year.
10) $\mathbf{R}^{2}=\mathbf{0 . 3 4 2 9}$ so $\mathbf{3 4 . 2 9 \%}$
11) No. The \mathbf{p}-value for the interaction is $\mathbf{0 . 0 2 8 7}$.
12) Yes. We fail to reject the null hypothesis that it is appropriate with a p-value of $\mathbf{0 . 6 7 1 4}$ from the Hosmer and Lemeshow Goodness-of-Fit test.
13) Yes. We reject the null hypothesis that they are not related with a p-value of $\mathbf{0 . 0 0 0 6}$ from the Likelihood Ratio $=$ Deviance test.
14) $P[$ survive $=1]=\frac{1}{1+e^{-(59.2919-0.3677(200))}}=\operatorname{approximately} 0$
(notice that the slope is negative!)
15) We are extrapolating.
