Statistics 516 - Spring 2003-Practice Exam 2

Part I: Answer the two following questions. Eight points each.

1) In performing an ANOVA, what four assumptions must be satisfied?
2) Define what is meant by the p-value (or empirical significance level) of a test.

Part II: Answer 12 of the following 13 questions. Seven Points each.

1) Consider a one-way ANOVA with three factor levels red, blue, and green. Because the SSB for this ANOVA would have two-degrees of freedom we would need to use two dummy variables if we wanted to perform the ANOVA using dummy variables. Give an example of two dummy variables that would work here, being careful to specify when each would take the value zero or one.

Problems 2 refers to the partial analysis below faces that is based on an article that appeared in the Fall 1996 issue of the Journal of Nonverbal Behavior. A sample of 36 students was randomly divided into six groups and each group was assigned to view one of six slides showing a person making a facial expression. The six expressions were Angry, Disgusted, Fearful, Happy, Sad, or Neutral. After viewing the faces the students were asked to rate the degree of dominance they inferred from the facial expressions (a scale ranging from -15 to 15).

```
DATA faces;
INPUT expression $ dominance @@;
CARDS;
\begin{tabular}{lllllll} 
Angry & 2.10 & Angry 0.64 & & Angry & 0.47 \\
Angry & 0.37 & Angry & 1.62 & & Angry -0.08 & \\
Disgusted & 0.40 & Disgusted & 0.73 & Disgusted & -0.07 \\
Disgusted & -0.25 & Disgusted & 0.89 & Disgusted & 1.93 \\
Fearful & 0.82 & Fearful & -2.93 & Fearful & -0.74 \\
Fearful & 0.79 & Fearful & -0.77 & Fearful & -1.60 \\
Happy & 1.71 & Happy & -0.04 & Happy & 1.04 \\
Happy & 1.44 & Happy & 1.37 & Happy & 0.59 \\
Sad & 0.74 & Sad & -1.26 & Sad & -2.27 \\
Sad & -0.39 & Sad & Neutral & -2.65 & Sad & -0.44 \\
Neutral & 1.69 & Neutral & -0.60 & Neutral & -0.55 \\
Neutral & 0.27 & & & Neutral & -2.16
\end{tabular}
;
PROC GLM ORDER=DATA;
CLASS expression;
MODEL dominance = expression;
ESTIMATE 'Angry vs. Disgusted' expression 1 -1 0 0 0 0
RUN;
                                The GLM Procedure
```


2) Construct a 95% confidence interval for the difference between the true average dominance rating of the angry and disgusted groups.

Problems 3 and 4 refer to the following partial analysis below. Seven different types of material (labeled A-F) were sent out to a sample of 13 laboratories for stress testing (since different laboratories use different testing methods). The PROC GLM code used was:

PROC GLM;
CLASS I ab material;
MODEL stress = Iab material Iab*material;
RANDOM I ab | ab*material;
RUN:
And the output was:

Sum of					
Source	DF	Squares	Mean Square	F Value	$\mathrm{Pr}>\mathrm{F}$
Model	90	322913.2482	3587.9250	177.01	<. 0001
Error	273	5533.5800	20.2695		
Corrected Total	363	328446.8282			
Source	DF	Type III SS	Mean Square	F Value	$\mathrm{Pr}>\mathrm{F}$
1 ab	12	30328.0547	2527.3379	124.69	<. 0001
material	6	268778.0771	44796.3462	2210.03	<. 0001
I ab*material	72	23807.1165	330.6544	16.31	<. 0001
Source	Type III Expected Mean Square				
1 ab	Var(Error) + 4 Var(lab*material) + 28 Var(lab)				
material	Var(Error) + 4 Var(lab*material) + Q(material)				
I ab*material	Var(Error) + 4 Var(lab*material)				

3) Find the value of the F statistic for testing that $\sigma_{\text {lab }}^{2}=0$ against $\sigma_{\text {lab }}^{2}>0$.
4) Find an estimate of $\sigma_{\text {lab }}^{2}$.

Problems 5 through 10 refer to the following data for a two-way ANOVA and SAS output shown below. There are two factors (factor A has $\mathrm{a}=3$ levels, factor C has $\mathrm{c}=4$ levels), and there are replications ($\mathrm{n}=2$). NO random effects.

	Factor C			
Factor A	1	2	3	4
1	26.4	38.3	40.5	19.8
	32.6	31.7	46.9	28.7
2	34.0	27.7	40.3	32.9
	20.7	37.2	44.7	37.6
3	43.8	54.4	49.0	43.8
	49.4	50.6	44.3	46.6
Factor C Means	34.5	40.0	44.3	34.9

Factor A Means
33.1
34.4
47.7
38.4

From PROC INSIGHT

Source	DF	Sum of Squares	Mean Square	F Stat	Pr $>$ F
Sodel	11	1767.3413	160.6674	6.57	0.0015
Error	12	293.2450	24.4371		
C Total	23	2060.5862			
Type					
Source	DF Tests	Sum of Squares	Mean Square	F Stat	Pr $>$ F
A	2	1049.9700	524.9850	21.48	0.0001
C		329.1100	129.4204	5.30	0.0148
A*C	6	54.8517	2.24	0.1099	

From PROC MULTTEST

5) Justify that the above design is factorial, balanced, with replications.
6) On the above data set, using the notation from class, identify $\mathrm{y}_{111}, \mathrm{y}_{112}, \mathrm{y}_{121}, \mathrm{y}_{342}, \bar{y}_{\bullet 1}$, and $\bar{y}_{\bullet \bullet \bullet}$.
7) Write the model equation for the two-way ANOVA with interactions, and identify the parameters you used.

$$
\mathrm{y}_{\mathrm{ijk}}=
$$

8) The DF and SS for Factor C were deleted. What values should they have?
```
SS= df=
```

9) Use the Holm procedure to construct a display showing which levels of Factor A are significantly different from each other at a family-wise $\alpha_{\mathrm{T}}=0.10$.
10) For each of the cases below, determine which test is appropriate:

- the overall p-value from the ANOVA table
- one of the type III tests (say which factor or interaction)
- a contrast (say which factor, and what the coefficients would be)
- Holm's test performed on all pairs of factor levels (say which factor)
- cannot be tested for this data-set
a) It is desired to test whether the Factor C has any effect on average on the output values.
b) It is desired to test whether Factor C has the same effect on the output values regardless of the level of Factor A.
c) It is desired to test whether level 1 of Factor C differs from level 4 of Factor C.
d) It is desired to simultaneously test whether there is an effect due to Factor A, Factor C, or an interaction.

Problems 11-13 use the attached partial analysis of the data set vitaminb. It is similar to results reported in the July 1995 issue of Journal of Nutrition. It concerns the effect of a vitabin B supplement on the weights of the kidneys of Zucker rats. Half of the rats were classified as obese, and half were classified as lean. The two groups of rats were then randomly assigned to receive either the regular diet or the diet with the vitamin b supplement. At the end of twenty weeks, the weights of the rats' kidneys were measured in grams.
11) Check the assumptions for performing this two-way ANOVA. Say how you checked them and whether they were satisfied.
12) Identify which group was used as the baseline group.
13) Consider the three p-values from the box of Type III Tests. Assuming that all of the assumptions are met, use an $\alpha=0.05$ for each of these three tests and report the conclusion you can draw from each one of them. Phrase your conclusions in terms of what the scientists were looking for in the problems. (e.g. There is/is not a significant effect on the kidney weight due to the choice of diet.)

DATA vitaminb;
INPUT diet $\$$ size $\$$ kidney @@;
CARDS;

| Regular | Lean 1.62 | Regular | Lean 1.47 | Regular | Lean 1.80 | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Regular | Lean | 1.37 | Regular | Lean 1.71 | Regular | Lean 1.71 |
| Regular | Lean 1.81 | | | | | |
| Bsupp | Lean 1.51 | Bsupp | Lean 1.63 | Bsupp | Lean 1.65 | |
| Bsupp | Lean 1.35 | Bsupp | Lean 1.45 | Bsupp | Lean 1.66 | |
| Bsupp | Lean 1.44 | | | | | |
| Regular | Obese 2.35 | Regular | Obese 2.84 | Regular | Obese 2.97 | |
| Regular | Obese 2.05 | Regular | Obese 2.54 | Regular | Obese 2.82 | |
| Regular | Obese 2.93 | | | | | |
| Bsupp | Obese 2.93 | Bsupp | Obese 2.63 | Bsupp | Obese 2.72 | |
| Bsupp | Obese 2.61 Bsupp | Obese 2.99 | Bsupp | Obese 2.64 | | |

PROC INSIGHT;
OPEN vitaminb;
FIT kidney = diet size diet*size;
RUN;

-	Analysis of Variance				
Source	DF	Sum of Squares	Mean Square	F Stat	$\operatorname{Pr}>$ F
Model	3	8.1168	2.7056	47.34	$<.0001$
Error	24	1.3715	0.0571		
C Total	27	9.4883			

	Type III Tests				
Source	DF	Sum of Squares	Mean Square	F Stat	Pr $>$ F
diet	1	0.0124	0.0124	0.22	0.6451
size	1	8.0679	8.0679	141.18	$<.0001$
diet*size	1	0.0364	0.0364	0.64	0.4324

- Parameter Estimates									
Variable	diet	size	DF	Estimate	Std Error	t Stat	$\operatorname{Pr}>\|t\|$	Tolerance	Var Inflation
Intercept			1	2.6429	0.0904	29.25	<. 0001		${ }^{0}$
diet	Bsupp Regular		1	$\begin{aligned} & 0.300 \\ & 0 \end{aligned}$	0.1278	0.23	0.8164	0.5000	2.0000
size		Lean Obese	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{gathered} -1.0014 \\ 0 \end{gathered}$	0.1278	-7.84	<. 0001	0.5000	2.0000
diet*size	Bsupp Bsupp	Lean Obese	$\begin{aligned} & 1 \\ & 0 \\ & 0 \end{aligned}$	$\begin{gathered} -0.1443 \\ 0 \end{gathered}$	0.1807	-0.80	0.4324	0.3333	$\dot{3} .0000$
	Regular Regular	Lean Obese	0 0	0					

DATA vitb2;
SET vitaminb;
KEEP kidney block;
block $=$ trim(diet) ||trim(size);

PROC GLM DATA=vitb2 ORDER=DATA;
CLASS block;
MODEL kidney = block;
MEANS block / HOVTEST=bf;
RUN;

The GLM Procedure

Brown and Forsythe's Test for Homogeneity of kidney Variance ANOVA of Absolute Deviations from Group Medians

	Sumof				
Source	MF	Squares	Square	F Value	Pr $>$ F
block	3	0.1018	0.0339	1.04	0.3945
Error	24	0.7860	0.0328		

