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S4 - More on Sampling Distributions: The t, χ2, and F Distributions

As we saw in Section 4.9, the normal distribution plays a pivotal roll in describing

how the sample mean x̄ will behave when you have a random sample x1, x2, . . . xn.

Unfortunately the central limit theorem only applies when the sample size is large.

Additionally, it only tells us about the sampling distribution of the sample mean, and

not about the sampling distribution of the sample variance s2. These limitations can

be overcome if we can believe that the sample was taken from a population that was

normal to begin with. That is, if we apply the methods in Section 4.6 and verify the

data is normal, we can get the sampling distribution for x̄ when n is small, and can

also get the sampling distribution for s2.

S4.1 - x̄ and the Normal Distribution

A fact that is proved in STAT 512 is: if the random sample is drawn from a

population that follows a normal distribution, then Z = x̄−µ
σ/
√

n
is exactly standard

normal. In other words, if the base population is already normal, the central limit

theorem result applies even when n = 1! The only difficulty in this is that we rarely,

if ever, know the value of the parameter σ. Because of this we can’t use this fact

directly.

S4.2 - s2 and the χ2 (chi-squared) Distribution

The χ2 distribution can be defined as follows. If z1, z2, . . . z(n−1) are independent

and each follows the standard normal distribution , then

X2 = z2
1 + z2

2 + · · · z2
(n−1)



follows the χ2 distribution with (n − 1) degrees of freedom. The table for this dis-

tribution (and a typical picture of it) can be found in TABLE XI on page 521. This

distribution is skewed to the right, has mean (n− 1), variance 2(n− 1), and takes all

values 0 and higher. (The normal on the other hand takes all positive and negative

values.)

The usefulness of this distribution becomes a bit clearer if we again consider the

random sample x1, x2, . . . xn from a normal distribution. Looking at the formula for

s2:

s2 =

∑n
i=1(xi − x̄)2

n− 1

we can see that we are squaring a bunch of independent normal random variables

(the xi) and summing them up. The only reason that this isn’t a χ2 random variable

is that they aren’t standard normal, and we are dividing by n-1.

By multiplying both sides of the above equation by n− 1 and dividing by σ2 we

get the following:

(n− 1)s2

σ2
=

n∑
i=1

(
xi − x̄

σ
)2

If the x̄ on the right side of the equation were replaced by µ, then we would be

summing up a bunch of z = xi−x̄
σ

and it would be the sum of n standard normals,

making a χ2 random variable with n degrees of freedom. Because we are using x̄

instead of µ we lose one degree of freedom, and so:

χ2
df=n−1 =

(n− 1)s2

σ2
(S1)

where the df in the subscript is the number of degrees of freedom.



If the data come from a sample that is normal, we know that the left hand side of

equation S1 behaves as a χ2 random variable, we known n− 1 because it is based on

the sample size, and we know s2 because we can calculate it from the data. If we solve

this equation for σ2 we could then get information about this unknown population

parameter. We will discuss this more in Chapters 5 and 6.

Table XI on pages 521-522 of the text give several of the values of the χ2 random

variable for a variety of degrees of freedom. Each row of this table corresponds to

a different number of degrees of freedom (df). Remember that you need to look at

df = n−1 if you are using the sample variance to investigate the population variance.

The rest of the table is set up the opposite of the normal table. The values along the

top are the probabilities (the areas that are shaded in on the figure) and the body

of the table contains the t values that go with those probabilities. Because each df

needs its own row, no table can possibly contain all of the possible values. (A normal

table can because we can change any normal to a standard normal, there is no such

simplification for the χ2.)

Say we wanted to know P (Tdf=8 ≤ 1.344). Looking at the df = 8 row of Table

XI, we see that this corresponds to a probability of 0.995. The probability is for

greater than 1.344 though, so we have to take 1-0.995 and get a value of 0.005. Many

of the values are not in the table however. The example on page 395 is seeking

P (Tdf=2 ≥ 6.52). The closest two values are 5.99 and 7.37. Because of this, all we

can say about the probability is that it is between 0.05 and 0.025. If an exact value

is needed then a computer package such as SAS would be used instead. We could

also use the table in the reverse direction. The t0 such that P (Tdf=10 ≥ t0) = 0.010 is

23.2093. The t0 such that P (Tdf=10 ≤ t0) = 0.010 is 2.55821.

S4.3 - x̄, s, and Student’s t-Distribution

As noted in S4.1, the difficulty with the central limit theorem is that it requires

us to know σ. The tool we use to do this is the t distribution that was discovered



in 1908 by chemist William Gosset at the Guinness brewery in Ireland. Because he

didn’t want employees at other breweries to know that he found statistics useful,

he published his results under the pseudonym Student. Hence, the distribution is

often known as Student’s t distribution. A t-distribution is formed by dividing a

standard normal by a χ2 over its degrees of freedom, where the normal and the χ2

are independent.

tdf=n−1 =
Z√

χ2
df=n−1

n−1

(S2)

At first this seems to be more than a little bit out of nowhere. A fact proved in

STAT 714 sheds some light on why it is useful however. If the sample x1, x2, . . . xn

is independent, then its sample mean x̄ and sample variance s2 are independent! If

the sample comes from a normal distribution, S4.1 showed that x̄ is related to a

standard normal distribution, and S4.2 showed that s2 is related to a χ2 distribution.

Combining these previous results gives:

tdf=n−1 =
Z√

χ2
df=n−1

n−1

=

x̄−µ
σ/
√

n√
(n−1)s2

σ2

n−1

By cancelling the n−1 terms in the denominator, applying the square root, multiply-

ing both the numerator and denominator by one over the denominator, and cancelling,

we get

tdf=n−1 =

x̄−µ
σ/
√

n√
s2

σ2

=

x̄−µ
σ/
√

n
s
σ

=

x̄−µ
σ/
√

n
σ
s

s
σ

σ
s

=
x̄− µ

s/
√

n
(S3)

Just as we could solve equation S1 to find out information about the population

variance, we can solve equation S3 to find out information about the population

mean, if the sample comes from a population that follows the normal distribution.



This usage is discussed more in Section 5.2. One useful fact about the t distribution

is that it becomes very similar to the standard normal distribution as the sample size

n increases.

Many tables for the t distribution stop at 30 degrees of freedom and simply refer

the user to a standard normal table. Our table IV continues on past 30, but does

not give all the values. Notice that the values change very little from one row to the

next after about row eighteen. If you go to the bottom row, all of the values should

be recognizable from the normal table.

S4.4 - Two variances and the F-Distribution

The final sampling distribution we will be concerned with is the F-distribution.

The F-distribution is defined by:

Fdfx=nx−1,dfy=ny−1 =

X2
x

nx−1
X2

y

ny−1

(S4)

where X2
x and X2

y are independent χ2 random variables with nx−1 and ny−1 degrees

of freedom respectively. Because it is formed by using two χ2 random variables, the

F-distribution has two separate degrees of freedom, one for the numerator and one

for the denominator. This makes the F tables even more complicated than the χ2 or

t tables.

The formula for the F-distribution again looks out of nowhere, until you recognize

that we could get this formula by comparing two variances. Say we have independent

random samples from two populations, call them x1, x2, . . . xnx and y1, y2, . . . yny . We

could then write:

Fdfx=nx−1,dfy=ny−1 =

(nx−1)s2x
σ2

x

nx−1
(ny−1)s2y

σ2
y

ny−1



Cancelling and then inverting the fractions, we get:

Fdfx=nx−1,dfy=ny−1 =

s2
x

σ2
x

s2
y

σ2
y

=

s2
x

s2
y

σ2
x

σ2
y

(S5)

Equation number S5 thus allows us to compare the variances of two different

populations, if we can assume both populations are normally distributed. Tables

VII, VIII, IX, and X give the values of the F-distribution for various combinations

of degrees of freedoms and areas under the curve. The F-distribution is useful not

only for comparing two variances, but in Section 7.6 we will see that it is useful for

comparing more than two means, and in Chapter 9 that it is useful for predicting one

variable from another.

One final fact that we will encounter later concerns the relationship between the

t-distribution and the F-distribution. Turn back to formula S2, and square the numer-

ator and the denominator. The denominator becomes the same as the denominator

in S5. The numerator becomes a Z2, which is just a χ2 with one degree of freedom.

We thus get the following result.

(tdf=n−1)
2 = Fdfx=1,dfy=n−1

This result means that in some cases in Chapter 9 we will be able to work with either

a t-distribution or an F-distribution and get the same result.


