1a) The mean of the errors is zero at each x
c) The variance of the errors is constant across x values
b) The errors are normal at each x
d) The errors are independent
2) The p-value is the probability of observing a statistic at least as extreme as the one observed if the null hypothesis is true.
3) Power can be increased by increasing the sample size or by increasing the α-level.
4)

5) If you knew nothing else about the student, regression to the mean would imply that they would score lower if they retook the test. A student scoring a 500 out of 800 (near the average) would score about the same if they retook it.
6) $\mathbf{4}$ (the number of treatment $\mathbf{d f}+\mathbf{1}$)
7) $\mathbf{H}_{0}: \mu_{1}=\mu_{2}=\mu_{3}=\mu_{4}=\mu_{5} \mathbf{H}_{A}:$ at least two means differ
8) $r=-0.75$ b $\quad r=0.0 \quad$ c and d $\quad r=0.75 \quad$ a

1a) Increase by $\mathbf{1 . 9 0 1 8}$ degrees (look at the slope)
b) \mathbf{p}-value is less than $\mathbf{0 . 0 0 0 1}$, so we reject the null hypothesis.
c) square root of the MSE $=\mathbf{0 . 4 4 4 0}$ degrees.
d) \mathbf{R}-squared $=\mathbf{0 . 9 9 4 4}=\mathbf{9 9 . 4 4 \%}$
e) The curve in the residual vs. predicted plot shows us that the mean does not appear to be zero at each x value (maybe caused by the outlier).

2a) Source	SS	DF	MS	F	Prob>F
Regression	2053.64	1	$\mathbf{2 0 5 3 . 6 4}$	$\mathbf{9 6 . 5 5}$	<0.001
Error	$\mathbf{2 7 6 . 5 7}$	13	$\mathbf{2 1 . 2 7}$		
Total	2330.21	$\mathbf{1 4}$			

b) Determine the estimated regression equation.
slope $=$ SSxy $/$ SSxx $=62.46 / 1.90=32.88$
intercept $=$ average $\mathrm{y}-$ slope $*$ average $\mathrm{x}=36.94-(32.88)(1.49)=-12.06$
so, $y=-12.06+32.88 x$
c) the total $\mathrm{df}=\mathrm{n}-1=14$ and the error $\mathrm{df}=\mathrm{n}-2=13$, so n , the original sample size, is $\mathbf{1 5}$.
d) Determine a 90% interval for the slope β_{1}.
$\alpha=0.10, \alpha / 2=0.05$, and $\mathrm{df}=13$ so $\mathrm{t}=1.771$
$32.88 \pm 1.771 * \operatorname{sqrt}(21.27) / \mathrm{sqrt}(1.90)$
32.88 ± 5.93 or $(\mathbf{2 6 . 9 5 , 3 8 . 8 1})$

