Part I: Answer three of the following four questions. If you answer more than three I will grade only the first three. Five points each.

1) Define what is meant by the p-value (or observed significance level) of a test.
2) (Circle the correct answers) The histogram at the right is skewed left / symmetric /skewed right.
We would expect that its mean would be
larger than / smaller than /equal to its median.
Hietogram of x

3) A fair coin (probability of a head on one flip $=0.5$) is flipped 10 times. What is the probability of observing exactly 5 heads?
4) A fair coin (probability of a head on one flip $=0.5$) is flipped 1,000 times. Using the normal approximation to the binomial, approximately what is the probability of observing at least 512 heads?

Part II: Answer every part of the next three problems. Read each problem carefully, and show your work for full credit. Twenty points each.

1) A study in the Journal of Head Trauma Rehabilitation (Apr. 1995) attempted to see if a psychological exam called the SCL-90-R could be used to diagnose mild to moderate brain trauma. "Normal" individuals are known to have a score of about 40. A sample of 23 patients diagnosed with mild to moderate traumatic brain injury had a mean score of 48.43 and a standard deviation of 20.76 .
A) State the appropriate null and alternate hypothesis to test if a high score on the exam seems to indicate mild to moderate traumatic brain injury. Identify any parameters you use in stating the hypotheses.
B) Test the hypothesis in part A. Report your conclusion at $\alpha=0.05$ (e.g. Do we accept or reject H_{0} ? Is a high test score associated with traumatic brain injury, or not?)
C) Construct a 95% confidence interval for the mean test score of patients who suffered mild to moderate traumatic brain injury.
D) What assumptions need to be satisfied in order to trust the results you obtained in parts B and C?
2) The attached data set includes the number of games won and the batting average for the 14 teams in the American League for the 1998 season. (Note that the 0.300 batting average is not a real observation and is missing the wins value.)
A) Note that four values have been deleted from the ANOVA table. What values should they have?

DF for total \qquad MS for Error
MS for model \qquad F Statistic
B) Assuming the assumptions for predicting this linear regression are met, perform the test of hypotheses for testing whether batting average predicts wins. What is the p-value, and what is your conclusion at $\alpha=0.05$?
C) Assuming the assumptions for this simple linear regression are met, identify which of the following statements are true or false.
$\underline{\mathbf{T}} / \underline{\mathbf{F}} 58.8 \%$ of a team's wins are explained by batting average.
$\overline{\mathbf{T}} / \overline{\mathbf{F}} \quad 58.8 \%$ of the variation in the number of wins a team has is explained by the batting average.
$\underline{\underline{T}} / \underline{\mathbf{F}} \quad$ The correlation coefficient for this regression is 0.588 .
$\underline{\mathbf{T}} / \underline{\mathbf{F}} \quad$ The coefficient of determination for this regressions is 0.588 .
D) Assuming the assumptions for this simple linear regression are met, give the estimated range that the model says 95% of the teams batting 0.300 should have win totals between.
E) Why can't we trust the interval in D?
3) The data below is from a 1992 study in the Journal of Marketing. One of the purposes of the study was to compare how men and women remembered products where the advertisement featured a male spokesperson. Samples of 150 male and 150 female viewers were used.

	Male Viewer	Female Viewer
Identified Product	95	41
Could Not Identify Product	55	109

A) Would this data be analyzed by using a test of independence, a test of homogeneity, or a goodness of fit test?
B) Write out the tables of expected values for conducting this test.
C) Give the formula for X^{2} for this problem (plugging the values in, but not needing to simplify).
D) What is the rejection region (critical region) for conducting this test at $\alpha=0.05$?
E) Why is, or why isn't, the sample size of this experiment large enough for performing this hypothesis test?

DATA alwins;
INPUT team \$ wins avg;
CARDS;

NY	114	.288
Tor	88	.266
Balt	79	.273
Bos	92	.280
TB	63	.261
Clev	89	.272
Det	65	.264
Chic	80	.271
KC	72	.263
Minn	70	.266
Ana	85	.272
Tex	88	.289
Sea	76	.276
Oak	74	.257
NewTeam	.	.300

;
PROC INSIGHT;
OPEN alwins;
FIT wins=avg;
RUN;

PROC REG DATA=alwins;
MODEL wins=avg / ALPHA=0.05 CLI CLM; RUN;

	Summary of Fit		
Mean of Response	81.0714	R-Square	0.5880
Root MSE	8.7867	Adj R-Sq	0.5537

-1	Analysis of Variance				
Source	DF	Sum of Squares	Mean Square	F Stat	$\operatorname{Pr}>$ F
Model	1	1322.4642	-	-	0.0014
Error	12	926.4644	-		
C Total		2248.9286	-		

\checkmark	Parameter Estimates						
Variable	DF	Estimate	Std Error	t Stat	$\operatorname{Pr}>\|t\|$	Tolerance	Var Inflation
Intercept	1	-205.7772	69.3480	-2.97	0.0118		0
avg	1	1057.3671	255.4804	4.14	0.0014	1.0000	1.0000

> The REG Procedure Model: MODEL1
> Dependent Variable: wins
> Output Statistics

	Dep Var	Predicted	Std Error					
Obs	wins	Value	Mean Predict	95\% CL	Mean	95\% CL	Predict	Residual
1	114.0000	98.7446	4.8733	88.1266	109.3626	76.8527	120.6364	15. 255
2	88.0000	75.4825	2.7089	69.5803	81.3847	55.4488	95.5161	12.5175
3	79.0000	82.8841	2. 3888	77.6793	88.0889	63.0447	102.7234	-3.8841
4	92.0000	90.2856	3. 2359	83.2352	97.3361	69.8841	110.6871	1.7144
5	63.0000	70.1957	3. 5242	62.5171	77.8742	49.5687	90.8226	-7.1957
6	89.0000	81.8267	2. 3554	76.6947	86.9587	62.0063	101.6471	7.1733
7	65.0000	73.3678	2. 9966	66.8388	79.8967	53.1406	93.5949	8. 3678
8	80.0000	80.7693	2. 3495	75.6503	85.8884	60.9523	100.5864	0.7693
9	72.0000	72.3104	3.1616	65.4219	79.1989	51.9643	92.6565	0.3104
10	70.0000	75.4825	2.7089	69.5803	81.3847	55.4488	95.5161	5.4825
11	85.0000	81.8267	2. 3554	76.6947	86.9587	62.0063	101.6471	3.1733
12	88.0000	99.8019	5. 0986	88.6929	110.9109	77.6678	121.9361	- 11.8019
13	76.0000	86.0562	2. 6392	80.3059	91.8064	66.0667	106.0456	-10.0562
14	74.0000	65.9662	4.3399	56.5103	75.4221	44.6138	87.3186	8.0338
15		111.4330	7.7026	94.6504	128. 2156	85.9738	136.8921	

Sum of Residuals	0
Sum of Squared Residuals	926.46437
Predicted Residual SS (PRESS)	1522.13052

