Part I:

1) The set of all 2003 Ford explorers is the population. The ten selected 2003 Ford explorers is the sample. The amount of damage is a quantitative variable.
2) The area must be 0.15 and since it is 3 units wide it must be 0.05 high ($3 \times 0.05=0.15$)

Class Interval	Frequency	Relative Frequency
$[-0.5,0.5)$	25	0.25
$[0.5,1.5)$	35	0.35
$[1.5,2.5)$	25	0.25
$[2.5,5.5)$	15	0.15

3) These alumni salaries are skewed right. The school would look better if it reported the mean income of its alumni.
4) Not normal so need to use Chebychev's theorem. $\mathbf{1 0 0 +} /-\mathbf{3 0}$ is $\mathbf{2}$ standard deviations so $\mathbf{k}=\mathbf{2}$. So at least $\mathbf{1 - 1} / \mathbf{2}^{\mathbf{2}}=\mathbf{1 - 1} / \mathbf{4}=\mathbf{0 . 7 5}=$ 75\%.
5) $\mathrm{P}(\mathrm{A})=0.12, \mathrm{P}(\mathrm{B})=0.16$. What can we say about $\mathrm{P}(\mathrm{A} \mid \mathrm{B})$ if A and B are independent $\mathbf{P}(\mathbf{A} \mid \mathbf{B})=\mathbf{P}(\mathbf{A})=\mathbf{0 . 1 2}$

What can we say about $P(A \mid B)$ if A and B are mutually exclusive? $\mathbf{P}(\mathbf{A} \mid \mathbf{B})=\mathbf{0}$
6) $\mathrm{P}(\mathrm{A})=0.12, \mathrm{P}(\mathrm{B})=0.16$, and $\mathrm{P}(\mathrm{A} \cap \mathrm{B})=0.08$. Find $\mathrm{P}(\mathrm{A} \mid \mathrm{B})$. $\mathbf{P}(\mathbf{A} \mid \mathbf{B})=\mathbf{P}(\mathbf{A} \cap \mathbf{B}) / \mathbf{P}(\mathbf{B})=\mathbf{0 . 0 8 / 0 . 1 6}=\mathbf{0 . 5 0}$

7) | x | 1 | 4 | 7 |
| :--- | :--- | :--- | :--- |
| $\mathrm{p}(\mathrm{x})$ | 0.25 | 0.5 | 0.25 |

$$
\begin{aligned}
& \mu=\Sigma \operatorname{xp}(\mathrm{x})=1(0.25)+4(0.5)+7(0.25)=0.25+2+1.75=4 \\
& \sigma^{2}=\Sigma(\mathrm{x}-\mu)^{2} \mathrm{p}(\mathrm{x})=(1-4)^{2} 0.25+(4-4)^{2} 0.5+(7-4)^{2} 0.25=2.25+0+2.25=4.5 \\
& \sigma=\operatorname{sqrt}(4.5)=2.12132
\end{aligned}
$$

8) How many different ways are there to divide a group of fifteen people into one group of size 4 and another of size 11 ?
$(15$ Choose 4$)=15!/(4!11!)=\frac{15 * 14 * 13 * 12 * 11 * 10 * 9 * 8 * 7 * 6 * 5 * 4 * 3 * 2 * 1}{4 * 3 * 2 * 1 * 11 * 10 * 9 * 8 * 7 * 6 * 5 * 4 * 3 * 2 * 1}=\frac{15 * 14 * 13 * 12}{4 * 3 * 2 * 1}=5 * 7 * 13 * 3=1365$

Part II:
1a) Find the mean. (5 oz. $+4 \mathrm{oz} .+2 \mathrm{oz} .+2 \mathrm{oz} .+7 \mathrm{oz}.) / 5=\mathbf{2 0} \mathrm{oz} . / 5=4 \mathrm{oz}$.
b) Find the median. 2 oz .2 oz .4 oz .5 oz .7 oz .
c) Find the range. $7 \mathbf{7 o z} .-2 \mathbf{2 o z} .=5 \mathbf{~ o z}$.
d) Find the variance. $\left((5-4)^{2}+(4-4)^{2}+(2-4)^{2}+(2-4)^{2}+(7-4)^{2}\right) /(5-1)=\left(1 \mathrm{oz}^{2}+0 \mathrm{oz}^{2}+4 \mathrm{oz}^{2}+4 \mathrm{oz}^{2}+9 \mathrm{oz}^{2}\right) / \mathbf{4}=\mathbf{1 8} / \mathbf{4}=\mathbf{4 . 5} \mathrm{oz}^{2}$
e) Find the standard deviation $\mathbf{~} \mathbf{q q r t}\left(\mathbf{4 . 5} \mathbf{~ o z}^{\mathbf{2}} \mathbf{)}=\mathbf{2 . 1 2 1 3 2} \mathbf{~ o z}\right.$
2) A candidate in a primary election hopes to have support from at least 35% of the likely voters in a state. A random survey of 200 likely voters is made the day before the election.
a) Why is it ok that p-changes. The population of an entire state is so large, that taking out only a few hundred people won't change the percentage very much, so it is ok to assume it didn't change. (see example 4.7 on pages 189-190)
b) If 35% of the likely voters in the entire state favor the candidate, what is the probability that exactly 80 of the 200 surveyed will favor the candidate? $200!/(80!120!)(0.35)^{\mathbf{8 0}}(\mathbf{0 . 6 5})^{100-80}$ (Comes out to $\mathbf{0 . 0 1 9 6}=\mathbf{1 . 9 6 \%}$ if you were to actually solve it.)
c) If 35% of the likely voters in the entire state favor the candidate, how many of the 200 surveyed are expected to favor her? $\mu=\mathbf{n p}=\mathbf{2 0 0 (0 . 3 5)}=\mathbf{7 0}$
d) If 35% of the likely voters in the entire state favor the candidate, what is the standard deviation of the number out of 200 surveyed who will favor her? $\boldsymbol{\sigma}=\mathbf{s q r t}(\mathbf{n p}(\mathbf{1}-\mathrm{p}))=\boldsymbol{\operatorname { s q r t }}(\mathbf{2 0 0}(\mathbf{0 . 3 5})(\mathbf{0 . 6 5}))=\operatorname{sqrt}(\mathbf{4 5 . 5})=\mathbf{6 . 7 4 5 3 6 9}$

