STAT 515 - Practice 3 Solutions

Pg 714: 13.15a by hand OR SAS. Also state the null and alternate hypothesis in terms of the parameters and the problem, and check the assumptions.

 $H_0: p_0=0.26, p_1=0.30, p_2=0.11, p_3=0.14, p_4=0.19$ H_A: not H₀

The expected values in this case would be 85*.26=22.1, 85*.30=25.5, 85*.11=9.35, 85*.14=11.9, and 85*.19=16.15... as all of these are greater than five the test should be reliable.

By SAS:

```
DATA avonex;
INPUT exacerbations $ count;
CARDS;
0
             32
1
      26
             15
2
3
              б
4plus
              б
;
PROC FREQ DATA=avonex ORDER=data;
TABLES exacerbations / TESTP=(.26,.30,.11,.14,.19);
WEIGHT count;
RUN;
                                      Chi-Square Test
                                 for Specified Proportions
                                 Chi - Square 17. 1631
                                 DF
                                 Pr > Chi Sq
                                                  0.0018
```

With a p-value of 0.0018 (much less than α =0.05) we reject the null hypothesis and conclude that there is a difference.

4

By hand:

$\chi^2 = \Sigma^2$	$\frac{(Obs - Exp)^2}{2} =$	$=\frac{(32-22.1)^2}{+}$	$\frac{(26-25.5)^2}{2}$	$+\frac{(15-9.35)^2}{}$	$+\frac{(6-11.9)^2}{}$	$+\frac{(6-16.15)^2}{2}$	= 17.16313
	Exp	22.1	25.5	9.35	11.9	16.15	

We compare this to 9.48773 (df=5-1=4, α =0.05) and reject the null hypothesis (so we conclude there is a difference).

Pg. 732: 13.35 b-d by hand and by SAS. Is the sample size large enough? Is this a test of homogeneity or of independence? Why?

DATA tumors; INPUT tumors \$ diet \$ count; CARDS; High_No 27 Υ 20 Hiqh Fib Y Low_No 19 Υ Low_Fib 14 Y Ν High_No 3 High Fib 10 Ν Ν Low_No 11 Ν Low_Fib 16 ; PROC FREQ DATA=tumors ORDER=DATA; WEIGHT count; TABLES tumors*diet / chisq expected nopercent; RUN;

Frequency,

Expect	ed,						
Row Pc	t,						
Col Pc ⁻	t, Hig	gh_No,H	igh_Fib, L	ow_No ,L	ow_Fib,	Total	
ffffff	fff^ff	<i>ffffff</i> ff	ffffffff	fffffff^f	ſſſſſſ		
Y	,	27,	20 ,	19,	14 ,	80	
	,	20,	20 ,	20 ,	20 ,		
	, 3	33.75,	25.00 ,	23.75 ,	17.50,		
	, Ç	90.00,	66.67,	63.33 ,	46.67 ,		
<i>ffffffff^fffffff^ffffffffffffffffffff</i>							
Ν	,	3,	10 ,	11 ,	16 ,	40	
	,	10 ,	10 ,	10 ,	10 ,		
	,	7.50,	25.00 ,	27.50,	40.00 ,		
	, -	10.00,	33.33 ,	36.67,	53.33 ,		
ffffff	fff^ff	ſ <i>ſſſſſ</i>	fffffff^f.	fffffff^f	ſſſſſſ		
Total		30	30	30	30	120	

Statistics for Table of tumors by diet

Chi-Square	3	12. 9000	0. 0049
ſſſſſſſſſſſſſſſſſſſſſ	ſſſſſſ	ſſſſſſſſſſſſſ	fffff
Statistic	DF	Val ue	Prob

By SAS:

b) As can be seen from the highlighted portions of the contingency table above the expected values are all 20 for the cancer groups and 10 for the non-cancer groups.

c) As can be seen from the statistics table the χ^2 value is 12.900.

d) With a p-value of 0.0049 (compared to α =0.05) we reject the null hypothesis and find that they are not independent.

By Hand:

b) The table of expected values is the row total times the column total divided by the grand total

		DIE	L		
Cancer	High/No	High/Fib	Low/No	Low/Fib	
Yes	80*30/120=20	80*30/120=20	80*30/120=20	80*30/120=20	
No	40*30/120=10	40*30/120=10	40*30/120=10	40*30	/120=10
c) $\chi^2 =$	$= \Sigma \frac{\left(Obs - Exp\right)^2}{Exp} = \frac{\left(27 - 22\right)^2}{20}$	$\frac{20)^2}{20} + \frac{(20-20)^2}{20} + \frac{(19)^2}{20}$	$\frac{(14-20)^2}{20} + \frac{(14-20)^2}{20}$	$+\frac{(3-10)^2}{10}+$	$\frac{(10-10)^2}{10}$
	$+\frac{(11-10)^2}{10}+$	$\frac{\left(16-10\right)^2}{10} = 2.45 + 0 + $	- 0.05 + 1.8 + 4.9 + 0 +	0.1 + 3.6 = 12.9	9

d) We compare 12.9 (the χ^2) to 7.18473 (df=(4-1)(2-1)=3, α =0.05) and reject the null hypothesis (so we conclude they are not independent).

It is a test of <u>homogeneity</u> because the <u>column</u> totals of 30 are fixed. (Note... in this case the row totals were not fixed, but if you turned the table sideways they would have been!)