Pg. 352: 8.57 $\quad H_{0}: \mu=0.100 \quad H_{A}: \mu>0.100 \quad \alpha=0.01$
$t_{d f=n-1=7}=\frac{\bar{x}-\mu}{s / \sqrt{n}}=\frac{0.210-0.100}{\sqrt{0.011} / \sqrt{8}}=2.97$
The rejection region is >2.998, so we fail to reject the null hypothesis. We cannot conclusively say it exceeds the limits.

Pg. 357: 8.62 $\quad \mathrm{H}_{0}: \mathrm{p}=0.75 \quad \mathrm{H}_{\mathrm{A}}: \mathrm{p}<0.75 \quad \alpha=0.05$
a) Since 0.69 is less than 0.75 it does seem to contradict the null hypothesis.
b) $z=\frac{\hat{p}-p}{\sqrt{\frac{p(1-p)}{n}}}=\frac{0.69-0.75}{\sqrt{\frac{0.75(1-0.75)}{100}}}=-1.39$

The rejection region is <-1.645, so we fail to reject the null hypothesis. We find that while it looks like $\mathrm{p}<0.75$, we do not have enough evidence to decide this conclusively.
c) We need to find the area less than $\mathrm{z}=-1.39$. The table gives that the area between 0 and 1.39 is 0.4177 , so the p value is 0.823 (draw the picture!). There is an 8.23% chance we would observe this much evidence against the null hypothesis, even if it were true. This does not meet the 5% standard we set.

Pg. 370: 8.88

a) We must assume that the population is normally distributed (check it using a q-q plot).
b) $\quad \mathrm{H}_{0}: \sigma^{2}=1 \quad \mathrm{H}_{\mathrm{A}}: \sigma^{2}>1 \quad \alpha=0.05$
$\chi_{d f=n-1=6}^{2}=\frac{(n-1) s^{2}}{\sigma^{2}}=\frac{(7-1) 4.84}{1}=29.04$
The rejection region is >12.5916, so we reject the null hypothesis and conclude the variance is greater than one.
c) $\mathrm{H}_{0}: \sigma^{2}=1 \quad \mathrm{H}_{\mathrm{A}}: \sigma^{2} \neq 1 \quad \alpha=0.05$
$\chi_{d f=n-1=6}^{2}=\frac{(n-1) s^{2}}{\sigma^{2}}=\frac{(7-1) 4.84}{1}=29.04$
The rejection region is <1.237347 or >14.4494, so we reject the null hypothesis and conclude the variance is not equal to one.

Pg. 392: 9.10

a) The output shows a p-value of 0.1114 so we would not reject the null hypothesis even if the a-level was 0.10 . (Note SAS always gives the p-value for \neq, so we would have needed to draw the picture and figure out the p-value manually if the alternate hypothesis was $<$ or $>$).

To check the numbers we first see that since we were testing $H_{0}:\left(\mu_{1}-\mu_{2}\right)=0$ vs. $H_{A}:\left(\mu_{1}-\mu_{2}\right) \neq 0$ we need the test statistic that compares two means:

$$
\frac{\bar{x}_{1}-\bar{x}_{2}-\left(\mu_{1}-\mu_{2}\right)}{\sqrt{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}}}
$$

But, of course we don't know σ_{1}^{2} or $\sigma^{2}{ }_{2}$. Since the sample sizes are small (17 and 12) we need to assume the variances are equal and use the pooled variance:
$s_{p}^{2}=\frac{\left(n_{1}-1\right) s_{1}^{2}+\left(n_{2}-1\right) s_{2}^{2}}{n_{1}+n_{2}-2}=\frac{(17-1) 3.4^{2}+(12-1) 4.8^{2}}{17+12-2}=16.237$
And so,
$t_{d f=n_{1}+n_{2}-2=27}=\frac{\bar{x}_{1}-\bar{x}_{2}-\left(\mu_{1}-\mu_{2}\right)}{\sqrt{\frac{s_{p}^{2}}{n_{1}}+\frac{s_{p}^{2}}{n_{2}}}}=\frac{5.4-7.9-0}{\sqrt{\frac{16.237}{17}+\frac{16.237}{12}}}=\frac{-2.5}{1.519}=-1.646$
b) We get the formula for the confidence interval in the usual way:
$t=\frac{\bar{x}_{1}-\bar{x}_{2}-\left(\mu_{1}-\mu_{2}\right)}{\sqrt{\frac{s_{p}^{2}}{n_{1}}+\frac{s_{p}^{2}}{n_{2}}}} \Rightarrow \bar{x}_{1}-\bar{x}_{2} \pm t \alpha / 2 \sqrt{\frac{s_{p}^{2}}{n_{1}}+\frac{s_{p}^{2}}{n_{2}}} \quad \Rightarrow \quad-2.5 \pm 2.052(1.519)$ or $(-5.617,0.617)$
Note that this is different than the value shown in the computer output!!

Pg. 415: 9.51

a) $14 / 98=0.1429$
b) $5 / 102=0.0490$
c) $\mathrm{H}_{0}: \mathrm{p}_{\mathrm{sj}}=\mathrm{pp}$ or $\mathrm{p}_{\mathrm{sj}}-\mathrm{p}_{\mathrm{p}}=0 \quad \mathrm{H}_{\mathrm{A}}: \mathrm{p}_{\mathrm{sj}}>\mathrm{p}_{\mathrm{p}}$ or $\mathrm{p}_{\mathrm{sj}}-\mathrm{p}_{\mathrm{p}}>0$

The formula for two percentages is:

$$
z=\frac{\hat{p}_{1}-\hat{p}_{2}-\left(p_{1}-p_{2}\right)}{\sqrt{\frac{p_{1}\left(1-p_{1}\right)}{n_{1}}+\frac{p_{2}\left(1-p_{2}\right)}{n_{2}}}}
$$

but we don't have the value for p_{1} and p_{2} to put in the denominator, so we need to use
$\bar{p}=\frac{n_{1} \hat{p}_{1}+n_{2} \hat{p}_{2}}{n_{1}+n_{2}}=\frac{98(.1429)+102(.0490)}{98+102}=0.095$
which gives

$$
z=\frac{\hat{p}_{1}-\hat{p}_{2}-\left(p_{1}-p_{2}\right)}{\sqrt{\frac{\bar{p}(1-\bar{p})}{n_{1}}+\frac{\bar{p}(1-\bar{p})}{n_{2}}}}=\frac{0.1429-0.049-(0)}{\sqrt{\frac{0.095(1-0.095)}{98}+\frac{0.095(1-0.095)}{102}}}=\frac{0.0939}{0.041475}=2.26
$$

At $\alpha=0.01$, we compare this to 2.326 and fail to reject H_{0} (we conclude St. John's wort does not work).
d) At $\alpha=0.10$, we compare this to 1.282 and reject H_{0} (we conclude St. John's wort does work).
e) α is important because it changes our conclusion!

