Statistics 515 - Solutions for Spring 2003 Practice Exam

Part I:

1) Mississippi has a population of approximately $3,000,000$ and is represented by a square 2 cm by 2 cm . How long will each side of the square for Pennsylvania (population 12,000,000) be? Area needs to be four times larger than $\mathbf{4} \mathbf{c m}^{2}=16 \mathbf{c m}^{2}$, $\mathbf{s o} \mathbf{s q r t (1 6)} \mathbf{c m} \mathbf{x}$ sqrt(16)cm or $4 \mathrm{~cm} \times 4 \mathbf{c m}$
2) A data-entry employee is entering a large list of salaries and one of them is mistyped by either adding or deleting 0 s from the end. Is this mistake more likely to affect the mean or the median of the salaries? Mean
3) If the data is approximately normal (or bell-shaped), about what percent of the data will be considered possible outliers?

$1-.997=.003=0.3 \%$

If the data is skewed, what is the largest percent of the data that could be considered possible outliers?
$1-\left(1-1 / k^{2}\right)=1 / k^{2}=1 / 3^{2}=1 / 9 \approx 11.1 \%$
4) $P(A)=0.6, P(B)=0.4$. If A and B are mutually exclusive, what is $P(A \cap B) ? 0$
5) $\mathrm{P}(\mathrm{A})=0.6, \mathrm{P}(\mathrm{B})=0.4$. If $\mathrm{P}(\mathrm{A} \mid \mathrm{B})=0.5$, what is $\mathrm{P}(\mathrm{AUB})$? $\mathbf{P}(\mathbf{A U B})=\mathbf{P}(\mathbf{A})+\mathbf{P}(\mathbf{B})-\mathbf{P}(\mathbf{A} \cap \mathbf{B})=\mathbf{P}(\mathbf{A})+\mathbf{P}(\mathbf{B})-\mathbf{P}(\mathbf{B}) \mathbf{P}(\mathbf{A} \mid \mathbf{B})$ $=0.6+0.4-(0.4)(0.5)=0.8$
6) Let the random variable X have the following distribution:

x	0	2	6
$\mathrm{p}(\mathrm{x})$	0.5	0.25	0.25

mean $=0(0.5)+2(0.25)+6(0.25)=2 \quad$ variance $=(0-2)^{2}(0.5)+(2-2)^{2}(0.25)+(6-2)^{2}(0.25)=2+0+4=6$
7) X is a normal random variable with $\mu=25, \sigma^{2}=25$, and $\sigma=5$. Find $\mathrm{P}(\mathrm{X} \leq 30) .=\mathbf{P}((\mathbf{X}-\boldsymbol{\mu}) / \boldsymbol{\sigma} \leq(\mathbf{3 0 - 2 5}) / \mathbf{5})$
$=\mathrm{P}(\mathrm{Z} \leq 1)=0.5+0.3413=0.8413$
8) Z is a standard normal random variable. Find z_{0} such that $\mathrm{P}\left(\mathrm{Z} \geq \mathrm{z}_{0}\right)=0.0778$. Look up $\mathbf{0 . 4 2 2 2}$ on the table to get $\mathbf{1 . 4 2}$

Part II:

1a) Find the mean. $(10 \mathrm{~cm}+9 \mathrm{~cm}+10 \mathrm{~cm}+17 \mathrm{~cm}+25 \mathrm{~cm}+19 \mathrm{~cm}) / 6=90 \mathrm{~cm} / 6=15 \mathrm{~cm}$
b) Find the median. 9 cm 10 cm 10 cm 17 cm 19 cm 25 cm The average of 10 cm and 17 cm is 13.5 cm .
c) Find the mode $10 \mathbf{c m}$ occurs most often
d) Find the variance. $\left((10 \mathrm{~cm}-15 \mathrm{~cm})^{2}+(9 \mathrm{~cm}-15 \mathrm{~cm})^{2}+(10 \mathrm{~cm}-15 \mathrm{~cm})^{2}+(17 \mathrm{~cm}-15 \mathrm{~cm})^{2}+(\mathbf{2 5} \mathrm{cm}-15 \mathrm{~cm})^{2}+(19 \mathrm{~cm}-15 \mathrm{~cm})^{2}\right) /(6-1)$

$$
=\left(25 \mathrm{~cm}^{2}+36 \mathrm{~cm}^{2}+25 \mathrm{~cm}^{2}+4 \mathrm{~cm}^{2}+100 \mathrm{~cm}^{2}+16 \mathrm{~cm}^{2}\right) / 5=206 \mathrm{~cm}^{2} / 5=41.2 \mathrm{~cm}^{2}
$$

e) Find the standard deviation. $\mathbf{s q r t}\left(\mathbf{4 1 . 2} \mathbf{~ c m}^{2}\right) \approx 6.419 \mathbf{~ c m}$
2) Based on past censuses and computer models, it is predicted that a large population is 51% female. A survey of 3,000 randomly chosen residents is conducted. Because the population is large and the residents are randomly chosen, this could be considered a binomial experiment.
a) What is the expected number of females in the 3,000 people surveyed? $\boldsymbol{\mu}=\mathbf{n p}=\mathbf{3 , 0 0 0}(\mathbf{0 . 5 1})=\mathbf{1 5 3 0}$
b) According to the past information, what is the standard deviation for the number of females in the 3,000 people surveyed?
$\sigma=\sqrt{ } \mathrm{np}(1-p)=\sqrt{ } \mathbf{3}, \mathbf{0 0 0}(0.51)(1-0.51)=\sqrt{ } \mathbf{3}, \mathbf{0 0 0}(0.51)(0.49)=\sqrt{ } 749.7 \approx 27.38$
c) According to the past information, what is the probability that exactly 1,500 of those surveyed will be women? (You do not need to simplify your answer). ($\mathbf{3 0 0 0}$ choose $\mathbf{1 5 0 0) (0 . 5 1)}{ }^{\mathbf{1 5 0 0}} \mathbf{(0 . 4 9) ^ { \mathbf { 3 0 0 0 - 1 5 0 0 } }}$
d) Assume that the number of women found by doing this experiment is approximately normally distributed with the mean you found in a and the standard deviation you found in b. Approximately what is the probability that you will observe 1,500 or fewer females? That is, find the approximate value of $\mathrm{P}(\mathrm{X} \leq 1500) . \quad \mathbf{P}(\mathbf{X} \leq \mathbf{1 5 0 0})=\mathbf{P}((\mathbf{X}-\mu) / \boldsymbol{\sigma} \leq \mathbf{(1 5 0 0 - 1 5 3 0}) / \mathbf{2 7 . 3 8})=\mathbf{P}(\mathbf{Z} \leq \mathbf{- 1 . 1 0})$

$$
=0.5-0.3643=0.1357
$$

e) One way to check whether we believe a binomial random variable should be approximately normally distributed would be to program a computer to repeat the experiment a large number of times. Say we programmed the computer to do this experiment 500 times. What kind of plot would you use to check that the results follow a normal distribution, and what would you look for in that plot? Q-Q plot should look like a straight line.

