Statistics 515 - Spring 2001 - Exam 1 Solutions

Part I:

1) $\mathrm{P}(\mathrm{A})=0.4, \mathrm{P}(\mathrm{B})=0.3$. If A and B are independent, what is $\mathrm{P}(\mathrm{A} \cap \mathrm{B})$? $\mathbf{0 . 3} \mathbf{*} \mathbf{0 . 4}=\mathbf{0 . 1 2}$
2) $\mathrm{P}(\mathrm{A})=0.4, \mathrm{P}(\mathrm{B})=0.3$. If A and B are mutually exclusive, what is $\mathrm{P}(\mathrm{A} \cap \mathrm{B})$? $\mathbf{0}$
3) A data-entry employee is entering a large list of salaries and one of them is mistyped by either adding or deleting 0 s from the end. Is this mistake more likely to affect the mean or the median of the salaries? mean
4) A display is being made to compare the populations of the states by using squares. Vermont has a population of approximately 600,000 and is represented by a square that is 1 cm by 1 cm . How long will each side of the square for West Virginia (population of approximately $1,800,000$) be? Area needs to be $\mathbf{3 c m} \mathbf{c m}^{\mathbf{2}}$, so sqrt(3) $\mathbf{x} \operatorname{sqrt}(3)$
5) It is often said that a value more than three standard deviations away from the mean is a possible outlier. If the data is approximately normal (or bell-shaped), about what percent of the data will be considered possible outliers?
$1-.997=.003=0.3 \%$
If the data is skewed, what is the largest percent of the data that could be considered possible outliers?
$1-\left(1-1 / k^{2}\right)=1 / k^{2}=1 / 3^{2}=1 / 9 \approx 11.1 \%$
6) Let the random variable X have the following distribution:

x	1	2	3
$\mathrm{p}(\mathrm{x})$	0.3	0.4	0.3

What are the mean and variance of X ? mean $=\mathbf{1}(\mathbf{0 . 3})+\mathbf{2 (0 . 4)}+\mathbf{3 (0 . 3)}=\mathbf{2 . 0}$
variance $=(1-2)^{2}(0.3)+(2-2)^{\mathbf{2}}(0.4)+(3-2)^{2}(0.3)=0.3+0+0.3=0.6$
7) X is a normal random variable with $\mu=5, \sigma^{2}=4$, and $\sigma=2$. Find $\mathrm{P}(4 \leq \mathrm{X} \leq 6)$. $=\mathbf{P}(\mathbf{(4 - 5) / \mathbf { 2 } \leq (\mathbf { X } - \mu) / \boldsymbol { \sigma } \leq (\mathbf { 6 - 5 }) / \mathbf { 2 })}$
$=P(-0.5 \leq Z \leq 0.5)=2 * 0.1915=0.3830$
8) Z is a standard normal random variable. Find z_{0} such that $\mathrm{P}\left(0 \leq \mathrm{Z} \leq \mathrm{z}_{0}\right)=0.4821$. $\mathbf{2 . 1 0}$ straight from the table

Part II:

1) For the data set: 3 feet 1 foot 10 feet 10 feet 1 foot answer the following questions, being sure to use the appropriate units. You must show all of your work for credit.
a) Find the mean. $\left(3^{\prime}+\mathbf{1}^{\prime}+\mathbf{1 0} 0^{\prime}+\mathbf{1 0}^{\prime}+\mathbf{1}^{\prime}\right) / \mathbf{5}=\mathbf{2 5}, \mathbf{5}=\mathbf{5}$ feet
b) Find the median. 1 foot 1 foot $\mathbf{3}$ feet 10 feet 10 feet
c) Find the variance. $\left(\left(3^{\prime}-5^{\prime}\right)^{2}+\left(1^{\prime}-5^{\prime}\right)^{2}+\left(10^{\prime}-5^{\prime}\right)^{2}+\left(10^{\prime}-5^{\prime}\right)^{2}+\left(1^{\prime}-5^{\prime}\right)^{2}\right) /(5-1)$

$$
=\left(4 \text { feet }^{2}+16 \text { feet }^{2}+25 \text { feet }^{2}+25 \text { feet }^{2}+16 \text { feet }^{2}\right) / 4=86 \text { feet }^{2} / 4=21.5 \text { feet }^{2}
$$

d) Find the standard deviation. $\operatorname{sqrt}\left(\mathbf{2 1 . 5}\right.$ feet $\left.^{2}\right) \approx 4.637$ feet
e) Find the mode. Both $\mathbf{1}$ foot and $\mathbf{1 0}$ feet occur most often.
2) Based on past censuses and computer models, it is predicted that a large population is 51% female. A survey of 3,000 randomly chosen residents is conducted. Because the population is large and the residents are randomly chosen, this could be considered a binomial experiment.
a) According to the past information, what is the expected number of females in the 3,000 people surveyed?
$\mu=n p=3,000(0.51)=1530$
b) According to the past information, what is the variance for the number of females in the 3,000 people surveyed?
$\sigma^{2}=\mathbf{n p}(1-p)=\mathbf{3 , 0 0 0}(0.51)(1-0.51)=\mathbf{3 , 0 0 0}(\mathbf{0 . 5 1})(0.49)=749.7$
c) According to the past information, what is the probability that exactly 1,570 of those surveyed will be women? (You do not need to simplify your answer). ($\mathbf{3 0 0 0}$ choose 1570) ($\mathbf{0 . 5 1})^{\mathbf{1 5 7 0}} \mathbf{(0 . 4 9)}{ }^{\mathbf{3 0 0 0 - 1 5 7 0}}$
d) Assuming the past information is true, use the central limit theorem to approximate the probability that 1,570 or more of those surveyed will be women.
$P(X \geq 1570)=P(X \geq 1569.5)=P((X-\mu) / \sigma \geq(1569.5-1530) / s q r t(749.7))=P(Z \geq 1.44)=0.5-0.4251=0.0749$

