Topics Covered from Chapter 1 to Chapter 3

Chapter One: Statistics

Descriptive Statistics vs. Inferential Statistics
Population vs. Sample
Parameter vs. Statistic
Variable vs. Observation
Qualitative vs. Quantitative
Nominal vs. Ordinal
Discrete vs. Continuous
Biased
Why randomness is important
If a "judgment sample" is used, what could go wrong?
If a "systematic sample" is used, what could go wrong?

Chapter Two: Descriptive Statistics for a Single Variable

Class, Class Frequency, and Relative Class Frequency
Bar Graph and Histogram (How to draw, Area=Relative Frequency)
Pareto Diagram
How to read a stem-and-leaf plot
Skewness vs. Symmetry
Mean, Median, Mode, and Midrange of a sample - how to calculate and what weaknesses they have
Range, Variance, and Standard Deviation of a sample
Quartiles, the Five Number Summary, and Box and Whiskers Display
Percentiles (What the mean, not how to find them)
Standard Score or Z-score
What a Q-Q plot is for
Chebyshev's Theorem and the Empirical Rule

Chapter Three: Descriptive Statistics for Two Variables

What to do for two qualitative variables... or for one qualitative and one quantitative variable Purpose of Regression
What do we mean by "slices of x " and why do we care about them
What do we mean by "regression to the mean"
How do we judge what line is best
How we use a regression line for predicting
How we use the standard deviation of the residuals
What the sign of r tells us
What r^{2} tells us
How to read the Minitab output

Formulas you will be given:
$s^{2}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}{n-1}$
$1-\frac{1}{k^{2}}$

$$
b_{1}=\frac{\sum_{i=1}^{n}\left[\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)\right]}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}} \quad b_{0}=\bar{y}-b_{1} \bar{x}
$$

Sum of Squared Errors $=\sum_{i=1}^{n}\left(y_{i}-\left(b_{0}+b_{1} x\right)\right)^{2}$

Standard Deviation of the Residuals $=\sqrt{\frac{\sum_{i=1}^{n}\left(y_{i}-\left(b_{0}+b_{1} x\right)\right)^{2}}{n-2}}$

$$
r=\frac{\sum_{i=1}^{n}\left[\left(x_{i}-\bar{x}\right)\left(y_{i}-y\right)\right]}{\sqrt{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2} \sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}}}
$$

$$
r^{2}=\frac{\operatorname{var}(y)-\left(\frac{n-2}{n-1}\right) \operatorname{var}(\text { residuals })}{\operatorname{var}(y)}
$$

