
7

Tangent Space Inference

In this chapter we outline some simple approaches to

inference based on tangent space approximations, which

are valid in datasets with small variability in shape. In

particular, we discuss one and two sample Hotelling’sT 2

tests for mean shape. We consider the isotropic model as

a special case, where more powerful procedures can be

obtained (if the model is appropriate). Finally, we consider

other multivariate techniques which work directly on shape

coordinates, with Euclidean approximations to the non-

Euclidean nature of the shape space.
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7.1 Tangent Space Inference for Shapes

The tangent space to shape space is a linear approximation

to shape space. A practical approach to analysis is to

use the Procrustes tangent space coordinates if the data

are concentrated and then perform standard multivariate

analysis in this linear space. One choice of tangent co-

ordinates are the Procrustes residuals (discussed in Chapter

3) or full/partial Procrustes tangent co-ordinates (Chapter

4 of Dryden and Mardia, 1998). This tangent based

approach is an approximation to inference using a general

multivariate normal model for the landmarks.

7.1.1 One sample Hotelling’sT 2 test

Consider carrying out a test on a mean shape of a single

population and whether or not the mean shape has a
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particular special shape[µ0], i.e. test between

H0 : [µ] = [µ0] versus H1 : [µ] 6= [µ0].

Let X1, . . . , Xn be a random sample of configurations

with partial Procrustes tangent coordinates (with poleµ̂

from the full Procrustes mean with unit size) given from

Equation (4.35) in Dryden and Mardia (1998) byv1, . . . , vn

where

vi = (Ikm−m − vec(µ̂)vec(µ̂)T)vec(XP
i /‖XP

i ‖). (7.1)

Let the tangent coordinates ofµ0 beγ0 where

γ0 = (Ikm−m − vec(µ̂)vec(µ̂)T)vec(µP
0 /‖µP

0 ‖)

and µP
0 is the Procrustes fit ofµ0 onto µ̂. Since the

dimension of the tangent space isM = km−m−m(m−

1)/2− 1 and the length of each vectorvi is (k− 1)m > M

we have a singular covariance matrix and so we could use
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generalized inverses.

Definition 7.1 A generalized inverse of a symmetric

square matrixA is denoted byA− and satisfies

A−AA− = A.

TheMoore–Penrose generalized inverseof A is

A− =
p
∑

j=1

λ−1
j γjγ

T
j ,

whereγj are the eigenvectors ofA corresponding to thep

non-zero eigenvaluesλj, j = 1, . . . , p.

To obtain a one sample test a standard multivariate

analysis approach is carried out onvi, where a multivariate

normal model forvi is assumed,

vi ∼ N(ξ, Σ),

independently fori = 1, . . . , n. The one sample

Hotelling’sT 2 test could be used (e.g. Mardia et al., 1979,
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p.125). We writēv = 1
n

∑

vi for the sample mean and we

write Sv = 1
n

∑

(vi− v̄)(vi− v̄)T, for the sample covariance

matrix (with divisorn). The Mahalanobis squared distance

betweenvi andγ0 is

D2 = (v̄ − γ0)
TS−

v (v̄ − γ0) (7.2)

whereS−
v is the Moore–Penrose generalized inverse of

Sv. The rank ofSv is min(M, n − 1) andwe assume that

the rank of our sample covariance matrices isM in this

chapter.

Important point: The test statistic is taken as

F =
(n − M)

M
D2 =

(n − M)

M

M
∑

j=1

s2
j/λj,

where thesj = γT
j (v̄ − γ0) is thejth principal component

(PC) score for(v̄ − γ0), j = 1, . . . , M. The test statistic

F has anFM,n−M distribution underH0. Hence, we reject
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H0 for large values ofF .

Example 7.1Consider the digit 3 data, described in

Section 1.2.4, withk = 13 points inm = 2 dimensions

on n = 30 objects. We might wish to examine whether

the population mean shape could be an idealized template,

such as that displayed in Figure 69, with equal sized loops,

with 12 of the landmarks lying equally spaced on two

regular octagons (apart from landmark 7 in the middle).

Theµ0 is taken as the template and the data are projected

into the tangent plane with the pole at the Procrustes mean

µ̂. The M = 22 PC scores are retained and the squared

Mahalanobis distance from̄v to the pole in the tangent

space is
∑M

j=1 s2
j/λj = 47.727 and henceF = 17.356.

SinceP (F22,8 > 17.356) ≈ 0.0002 we have very strong

evidence that the population mean shape does not have the
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shape of this template.2

This example is used as an illustration of the one sample

test, although one could question why one should really

be interested in this particularµ0 for the digit 3. However,

the procedure can of course be used to obtain confidence

regions for shape, where the confidence region is the set of

all µ0 whereH0 is not rejected.
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Figure 69 A template number 3 digit, with two equal sized arcs, and with12 landmarks

lying on two regular octagons.
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7.1.2 Two independent sample Hotelling’sT 2 test

Consider two independent random samplesX1, . . . , Xn1

andY1, . . . , Yn2
from independent populations with mean

shapes[µ1] and[µ2]. To test between

H0 : [µ1] = [µ2] versus H1 : [µ1] 6= [µ2],

we could carry out a Hotelling’sT 2 two sample test in

the Procrustes tangent space, where the pole corresponds

to the overall pooled full Procrustes mean shapeµ̂ (i.e.

the full Procrustes mean shape calculated by GPA on all

n1 + n2 individuals). Letv1, . . . , vn1
andw1, . . . , wn2

be

the partial Procrustes tangent coordinates (with poleµ̂).

The multivariate normal model is proposed in the tangent

space, where

vi ∼ N(ξ1, Σ) , wj ∼ N(ξ2, Σ), i = 1, . . . , n1; j = 1, . . . , n2,
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and thevi and wj are all mutually independent, and

common covariance matrices are assumed. We writev̄, w̄

andSv, Sw for the sample means and sample covariance

matrices (with divisorsn1 and n2) in each group. The

Mahalanobis distance squared betweenv̄ andw̄ is

D2 = (v̄ − w̄)TS−
u (v̄ − w̄), (7.3)

whereSu = (n1Sv + n2Sw)/(n1 + n2 − 2), andS−
u is the

Moore–Penrose generalized inverse ofSu (see Definition

7.1). UnderH0 we haveξ1 = ξ2, and we use the test

statistic

F =
n1n2(n1 + n2 − M − 1)

(n1 + n2)(n1 + n2 − 2)M
D2. (7.4)

The test statistic has anFM,n1+n2−M−1 distribution under

H0. Hence, we rejectH0 for large values ofF .

Example 7.2Consider the gorilla skull data described in
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Section 1.2.2. There aren1 = 30 female gorilla skulls and

n2 = 29 male gorilla skulls, withk = 8 landmarks in two

dimensions, and so there areM = 2k − 4 = 12 shape

dimensions. To examine the assumptions of the model

we see whether equal covariance matrices in each group

are reasonable. The first three PCs in each group explain

34.8%, 22.9%, 11.2% (females) and 42.0%, 18.0%, 12.4%

(males) of the variability in each group. A plot of the first

PC for each group is given in Figures 70 and 71 showing

fairly similar structures (a contrast with the front of the

face and the back of the braincase (pr, na, l) versus the

rest). So we take the equal covariance matrix assumption

as reasonable. A formal test such as Box’sM test (cf.

Mardia et al., 1979, p.140) could also be carried out, and

here Box’sM statistic is67.18, which has an approximate
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chi-squared distribution with78 degrees of freedom under

the null hypothesis of equal covariance matrices. Since

P (χ2
78 > 67.18) = 0.8 we cannot reject the null

hypothesis of equal covariance matrices. The percentages

of variability explained by the first three within group

PCs are 37.3%, 16.0%, 14.7% and the first three PCs are

included in Figure 72. In addition, we have no reason to

doubt multivariate normality from the pairwise scatters of

the standardized PC scores of the data (some of the PC

scores are shown in Figure 73).

The observed test statistic isF = 26.470 and since

P (F12,46 > 4.47) = 0.0001 we have very strong evidence

that the mean shapes are different. So our conclusion

would be that there is a significant difference in mean

shape between the female and male gorilla skulls in the
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Figure 70 The first PC for the gorilla females. The mean shape is drawn with vectors to

an icon +3 (—–) standard deviations along the first PC away from the mean.
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Figure 71 The first PC for the gorilla males. The mean shape is drawn withvectors to an

icon +3 (—–) standard deviations along the first PC away from the mean.
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midline.

2

7.1.3 Permutation test

The assumptions of the HotellingT 2 test may be doubted

in certain applications. An alternative procedure is to

consider apermutation test (Good, 1994; Dryden and

Mardia, 1993; Bookstein, 1997b), with the null hypothesis

that the groups have equal mean shapes. For a two sample

permutation test the data are permuted into two groups of

the same size as the groups in the data, and the test statistic

is evaluated for all possible permutationsT1, . . . , TP . The

rankingr of the observed test statisticTobs is then used to

give thep-value of the permutation test:

p − value = 1 −
r − 1

P
.
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Figure 72 Principal components for the gorilla data using a pooled within group

covariance matrix. The first row displays PCs 1, 2 and 3 (from left to right) and the second

row displays PCs 9, 11 and 12 (from left to right) . In each plotthe mean shape is drawn

with vectors to an icon +3 standard deviations along the PC away from the mean. The

vectors on the top row are magnified 3 times and the vectors on the bottom row are

magnified 10 times.
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Figure 73 Pairwise scatter plots of the centroid sizes, the full Procrustes distances to the

pooled mean and PC scores 9, 11, 2, 12, 1,(si, dF i, ci9, ci11, ci2, ci12, ci1)
T for the

gorilla data: males (m) and females (f). These particular PCscorescij have the highest

correlation with the observed group shape difference, and we can see a clear separation

between the groups in terms of shape, using score 9 and any other score.
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An alternative to evaluating allTi is to consider a number

B (say 100 or 1000) of random permutations, and the

procedure is called aMonte Carlo test. The rankingr

of the observed test statistic fromB random permutations

gives a p-value of

1 −
r − 1

B + 1
.

Example 7.3Consider the 3D macaque data of Section

1.2.8. There aren1 = 9 males andn2 = 9 females, each

with k = 7 landmarks inm = 3 dimensions. We wish to

test whether the mean population shapes for both sexes are

equal. After performing full Procrustes GPA on the pooled

dataset we transform to the tangent space coordinates of

Equation (7.1). The dimension of the shape space isM =

14 [7 × 3 (coordinates)−3 (location)−3 (rotation)−1
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(size)]. Examining the shape variability in the two groups it

seems doubtful that both groups have the same covariance

matrix – the male group is more variable in shape, as seen

in Example 5.1. In spite of this evidence, proceeding with

the Hotelling’sT 2 test the squared Mahalanobis distance

D2 is 28.90 between the groups and soF = 1.74 and

P (F14,3 > 1.74) = 0.36, and so this is not a significant

difference in mean shape.

However, as the assumption of equal variances is

doubtful a permutation test could be carried out. The data

are randomly split into two groups each of size 9. Out of

99 such permutations the observedF statistic of Equation

(7.4) had rank 61, giving ap-value of 0.4, and so there is

no evidence for a difference in mean shape.
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The sample sizes are very small here and we might

expect the Hotelling’sT 2 test to be not very powerful.2

Bookstein (1991, p.282) and Bookstein and Sampson

(1990) also describe Hotelling’sT 2 tests for shape

difference using Bookstein coordinates (see Section 7.3),

and they also consider testing for affine or uniform shape

changes (see Section 10.6.3).

7.1.4 Extensions

Further inference, such as testing the equality of the mean

shapes in several groups, proceeds in a similar manner.

An overall pooled full Procrustes mean is taken as the

pole and multivariate analysis of variance (MANOVA)

(see, for example, Mardia et al., 1979, p.333) is carried

out on the Procrustes tangent coordinates. General linear
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models could be proposed in the tangent space and the

full armoury of multivariate data analysis can be used to

analyse shape data, provided variations are small.

7.1.5 Dimension reduction in inference

In some datasets there are few observations and possibly

many landmarks on each individual. Although inference

can be carried out in a suitable tangent space there is often

a problem with the space being over-dimensioned. For

example, a Hotelling’sT 2 test may not be very powerful

unless there are a large number of observations available.

A practical solution is to perform a PCA on the pooled

datasets and retain the first few PC scores, although there

are obvious dangers, particularly if a true group difference

is orthogonal to the first few PCs. An alternative approach

is to delete excess elements in each vectorvi.
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7.2 Inference Using Procrustes Statistics Under Isotropy

Another simple approach to statistical inference is to

work with statistics based on squared Procrustes distances.

Goodall (1991) has considered such an approach using

approximate chi-squared distributions, following from the

work of Sibson (1978, 1979) and Langron and Collins

(1985). The underlying model is that configurations are

isotropic normal perturbations from mean configurations,

and the distributions of the squared Procrustes distances

are approximately chi-squared distributions. The proce-

dures require a much more restrictive isotropic model than

the previous section, but when the model is appropriate

more powerful tests result.
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7.2.1 One sample Goodall’sF test

We consider first the case when a random sample of

n observationsX1, . . . , Xn (each ak × m matrix) is

taken from an isotropic normal model with meanµ and

transformed by an additional location, rotation and scale,

i.e.

Xi = βi(µ + Ei)Γi + 1kγ
T
i , vec(Ei) ∼ N(0, σ2Ikm),

(7.5)

whereβi > 0 (scale),Γi ∈ SO(m) (rotation) andγi ∈ IRm

(translation), andσ is small.

The following approximate analysis of variance (ANOVA)

identity holds forµ̂ ≈ µ and smallσ:

n
∑

i=1

d2
F (Xi, µ) ≈

n
∑

i=1

d2
F (Xi, µ̂) + nd2

F (µ, µ̂),

where µ̂ is the full Procrustes mean anddF is the full
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Procrustes distance of Equation (4.15). The proof can be

seen using Taylor series expansions. Note the similarities

with analysis of variance in classical regression analysis

– the left-hand side of the equation is like a total sum of

squares and the right-hand side is like the residual sum of

squares plus the explained (regression) sum of squares.

Consider testing betweenH0 : [µ] = [µ0] and H1 :

[µ] 6= [µ0]. Under the null model it can be shown that

approximately (to second order terms inEi) that

d2
F (Xi, µ0) ∼ τ 2

0 χ2
M (7.6)

independently fori = 1, . . . , n, whereM = km − m −

m(m − 1)/2 − 1 is the dimension of the shape space,

τ0 = σ/δ0, and δ0 = S(µ0) = ‖Cµ0‖ is the centroid

size of µ0. The proof can be obtained by Taylor series

expansions, after Sibson (1978), and the proof for the
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m = 2 dimensional case is seen from Equation (6.16),

when discussing the complex Watson distribution.

From the additive property of independent chi-squared

distributions,

n
∑

i=1

d2
F (Xi, µ0) ∼ τ 2

0 χ2
nM .

In addition, sinceM parameters are estimated inµ̂ we have

n
∑

i=1

d2
F (Xi, µ̂) ∼ τ 2

0 χ2
(n−1)M

andd2
F (µ0, µ̂) is approximately independent of

∑

d2
F (Xi, µ̂).

Hence, approximately

nd2
F (µ0, µ̂) ∼ τ 2

0χ2
M , (7.7)

again using the additive property of independent chi-

squared distributions. So, underH0 we have the approx-

imate result

F = (n − 1)n
d2

F (µ0, µ̂)
∑n

i=1 d2
F (Xi, µ̂)

∼ FM,(n−1)M . (7.8)
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This is valid for smallσ andµ0 close toµ̂, and so we reject

H0 for large values of this test statistic. We call the test the

one sample Goodall’sF test, after Goodall (1991).

If τ0 is small,Ei is isotropic (but not necessarily normal)

andnM is large, then approximately

n
∑

i=1

d2
F (Xi, µ) ∼ N(τ 2

0 nM, 2τ 4
0nM)

by applying the central limit theorem.

The test based on the isotropic model can be seen

as a special case of the Hotelling’sT 2 procedure of

Section 7.1.1. If we replaceSv with s2
vI2k−2, wheres2

v is

the unbiased estimate of variance, then the Mahalanobis

distance of Equation (7.2) becomes

D2 = s−2
v ‖γ0 − v̄‖2 = d2

F (µ0, µ̂)/s2
v,
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from Equation (4.30). Now

s2
v =

1

n − 1

n
∑

i=1

‖vi − v̄‖2 =
1

n − 1

n
∑

i=1

d2
F (Xi, µ̂)

and hence the test statistic for the one sample Hotelling’s

T 2 test statistic would be proportional to

d2
F (µ0, µ̂)

/ n
∑

i=1

d2
F (Xi, µ̂).

Hence the one sample Hotelling’sT 2 test under the

isotropic model would be identical to using theF statistic

of Equation (7.8).

7.2.2 Two independent sample Goodall’sF test

Consider independent random samplesX1, ..., Xn1
from

a population modelled by Equation (7.5) with meanµ1,

and Y1, ..., Yn2
from Equation (7.5) with meanµ2. Both

populations are assumed to have a common variance for

each coordinateσ2. We wish to testH0 : [µ1] = [µ2](=
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[µ0]), say, againstH1 : [µ1] 6= [µ2]. Let [µ̂1] and[µ̂2] be the

full Procrustes means of each sample, with iconsµ̂1 and

µ̂2. UnderH0, with σ small, the Procrustes distances are

approximately distributed as

n1
∑

i=1

d2
F (Xi, µ̂1) ∼ τ 2

0 χ2
(n1−1)M ,

n2
∑

i=1

d2
F (Yi, µ̂2) ∼ τ 2

0 χ2
(n2−1)M ,

d2
F (µ̂1, µ̂2) ∼ τ 2

0

(

1

n1
+

1

n2

)

χ2
M ,

where τ0 = σ/δ0 and δ0 = S(µ0). Again, proofs

of the results can be obtained using Taylor series

expansions. In addition these statistics are approximately

mutually independent (exactly in the case of the first two

expressions). Hence, underH0 we have the approximate
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distribution

F =
n1 + n2 − 2

n1
−1 + n2

−1

d2
F (µ̂1, µ̂2)

∑n1

i=1 d2
F (Xi, µ̂1) +

∑n2

i=1 d2
F (Yi, µ̂2)

∼ FM,(n1+n2−2)M ,

(7.9)

and again this result is valid for smallσ. We rejectH0

for large values of this test statistic. We call the test the

two independent sample Goodall’sF test after Goodall

(1991).

Example 7.4Consider the schizophrenia data described in

Section 1.2.3. We wish to test whether the mean shapes of

brain landmarks are different in the two groups of control

subjects and schizophrenic patients. There arek = 13

landmarks inm = 2 dimensions. The Procrustes rotated

data for the groups are displayed in Figures 74 and 75. We

see that there are generally circular scatters of points at

each landmark in each group (as required for the isotropic
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Figure 74 The Procrustes rotated brain landmark data for the 14 control subjects.
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Figure 75 The Procrustes rotated brain landmark data for the 14 schizophrenic patients.
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model).

The percentages of variability explained by the first

three PCs are31.6%, 21.4%, 13.2% for the controls and

27.1%, 21.7%, 4.8% for the schizophrenic patients. Box’s

M test was carried out and there is some evidence against

equal covariance matrices. The root mean square ofdF

in each group is0.068 in the controls and0.073 in the

schizophrenia group. Carrying out a likelihood ratio test

for isotropy in each group (e.g Mardia et al., 1979, p.235)

on the 13 non-zero unstandardized scores, we cannot

reject the null hypothesis of isotropy. Of course we only

have small samples here, and so with more data we may

reject isotropy – this topic merits further investigation.

Despite Box’sM test suggesting a difference in covariance

matrices, for illustrative purposes we shall proceed with
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with the GoodallF test, which assumes isotropy and equal

variances.
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Figure 76 The full Procrustes mean shapes of the normal subjects (x) and schizophrenic

patients (+) for the brain landmark data, rotated to each other by GPA.

The mean configurations are displayed in Figure 76. The

full Procrustes distancedF between the mean shapes is

0.038. The sum of squared full Procrustes distances from

each configuration to its mean shape is 0.140 and so the
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F statistic is 1.89. SinceP (F22,572 ≥ 1.89) ≈ 0.01 we

have evidence for a significant difference in shape. So,

we conclude that the subjects with schizophrenia have

different shaped mean landmark configurations from the

control subjects.

Following Bookstein (1997b) we also consider a Monte

Carlo test, as described in Section 7.1.3, based on 999

random permutations. The configurations are randomly

assigned into each of the two groups, theF statistic is

calculated and the proportion of times that the resultingF

statistic exceeds the observed value of1.89 is thep-value

for the test. From 999 random permutations we obtained

a p-value of 0.04. Hence, we have some evidence that

the mean configurations are different in shape, but with a

largerp-value than for the isotropic based tests.
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If we carry out a Hotelling’sT 2 test in the tangent space

we haveF = 0.834 which is near the centre of the null

distribution (P (F22,5 > 0.834) = 0.66). So, the Hotelling’s

T 2 provides no evidence for a shape difference, illustrating

that the Hotelling’sT 2 procedure is less powerful than

Goodall’sF test, when the isotropic normal model holds.

Power is lost because many degrees of freedom are used in

estimating the covariance matrix in the Hotelling’sT 2 test.

2

Note that the test based on the isotropic model can be

seen as a special case of the two sample Hotelling’sT 2

procedure of Section 7.1.2. If we replaceSu with s2
uI2k−2,

where s2
u is the unbiased estimate of variance, then the

Mahalanobis distance of Equation (7.3) becomes

D2 = s−2
u ‖v̄ − w̄‖2 ≈ d2

F (µ̂1, µ̂2)/s
2
u,
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from Equation (4.31). Now

s2
u =

1

n1 + n2 − 2







n1
∑

i=1

‖vi − v̄‖2 +
n2
∑

j=1

‖wj − w̄‖2







≈
1

n1 + n2 − 2







n1
∑

i=1

d2
F (Xi, µ̂1) +

n2
∑

j=1

d2
F (Yj, µ̂2)







(7.10)

and so the test statistic for the two sample Hotelling’sT 2

test statistic would be proportional to

d2
F (µ̂1, µ̂2)

∑n1

i=1 d2
F (Xi, µ̂1) +

∑n2

j=1 d2
F (Yj, µ̂2)

.

Hence the Hotelling’sT 2 test under the isotropic model

would be identical to using theF statistic of Equation

(7.9).

7.2.3 One way analysis of variance

Consider a balanced analysis of variance with independent

random samples(Xi1, ..., Xin)
T, i = 1, ..., nG, from nG

groups, each of sizen. Let [µ̂j] be the group full Procrustes

means and[µ̂] is the overall pooled full Procrustes mean
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shape. A suitable test statistic (Goodall, 1991) is

F = n(n − 1)nG

∑nG

j=1 d2
F (µ̂j, µ̂)

(nG − 1)
∑nG

j=1
∑n

i=1 d2
F (Xji, µ̂j)

.

Under the null hypothesis of equal means the approximate

distribution of F is F(nG−1)M,nG(n−1)M and the null

hypothesis is rejected for large values of the statistic. Since

d2
F (µ̂1, µ̂2) = 2

(

d2
F (µ̂1, µ̂) + d2

F (µ̂2, µ̂)
)

,

the two sample test of the previous section (withn1 = n2)

is a special case.


