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Tangent Space Inference

In this chapter we outline some simple approaches to
inference based on tangent space approximations, which
are valid in datasets with small variability in shape. In
particular, we discuss one and two sample Hotelliri’'s
tests for mean shape. We consider the isotropic model as
a special case, where more powerful procedures can be
obtained (if the model is appropriate). Finally, we conside
other multivariate techniques which work directly on shape
coordinates, with Euclidean approximations to the non-

Euclidean nature of the shape space.
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7.1 Tangent Space Inference for Shapes

The tangent space to shape space is a linear approximation
to shape space. A practical approach to analysis is to
use the Procrustes tangent space coordinates if the data
are concentrated and then perform standard multivariate
analysis in this linear space. One choice of tangent co-
ordinates are the Procrustes residuals (discussed in &hapt
3) or full/partial Procrustes tangent co-ordinates (Chapt

4 of Dryden and Mardia, 1998). This tangent based
approach is an approximation to inference using a general

multivariate normal model for the landmarks.
7.1.1 One sample Hotelling’B? test

Consider carrying out a test on a mean shape of a single

population and whether or not the mean shape has a
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particular special shapgg], i.e. test between

Let X;,...,X, be a random sample of configurations
with partial Procrustes tangent coordinates (with pole
from the full Procrustes mean with unit size) given from
Equation (4.35) in Dryden and Mardia (1998)4y. . ., v,

where
Vi = (L — vec(f)vec(i) " Jvee( X /|| X)), (7.1)
Let the tangent coordinates pf be~, where

Y0 = (Tkm-m — vec(f)vec(i) " Jvec(uy /Il )

and ! is the Procrustes fit ofi onto fi. Since the
dimension of the tangent spacelis = km —m — m(m —
1)/2 — 1 and the length of each vectoris (k —1)m > M

we have a singular covariance matrix and so we could use
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generalized inverses.

Definition 7.1 A generalized inverse of a symmetric

square matrixA is denoted byl ™~ and satisfies
ATAAT = A.

TheMoore—Penrose generalized inversef A is

where; are the eigenvectors of corresponding to the

non-zero eigenvalues;, j=1,...,p.

To obtain a one sample test a standard multivariate
analysis approach is carried out onwhere a multivariate

normal model fon; is assumed,

independently forc = 1,...,n. The one sample

Hotelling’s 7 test could be used (e.g. Mardia et al., 1979,



206 STATISTICAL SHAPE ANALYSIS

p.125). We writev = X 5 v; for the sample mean and we
write S, = £ ¥(v; —v)(v; —v)*, for the sample covariance
matrix (with divisorn). The Mahalanobis squared distance

betweerv; and~y is
(7.2)

where S, is the Moore—Penrose generalized inverse of
S,. The rank ofS, is min(M, n — 1) andwe assume that
the rank of our sample covariance matrices isV/ in this
chapter.

Important point: The test statistic is taken as

where thes; = 7}(@ — 79) Is thejth principal component
(PC) score for(v — ), j = 1,..., M. The test statistic

F has anF}y s distribution underf,. Hence, we reject
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H, for large values of".

Example 7.1Consider the digit 3 data, described in
Section 1.2.4, withk = 13 points inm = 2 dimensions
onn = 30 objects. We might wish to examine whether
the population mean shape could be an idealized template,
such as that displayed in Figure 69, with equal sized loops,
with 12 of the landmarks lying equally spaced on two
regular octagons (apart from landmark 7 in the middle).
The p is taken as the template and the data are projected
into the tangent plane with the pole at the Procrustes mean
fi. The M = 22 PC scores are retained and the squared
Mahalanobis distance from to the pole in the tangent
space isy}, s7/\; = 47.727 and hencel" = 17.356.
Since P(Fy g > 17.356) ~ 0.0002 we have very strong

evidence that the population mean shape does not have the
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shape of this templated

This example is used as an illustration of the one sample
test, although one could question why one should really
be interested in this particulas for the digit 3. However,
the procedure can of course be used to obtain confidence
regions for shape, where the confidence region is the set of

all o whereH, is not rejected.

>

Figure 69 A template number 3 digit, with two equal sized arcs, and WRHandmarks

lying on two regular octagons.
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7.1.2 Two independent sample Hotelling's test

Consider two independent random sampkes. .., X,

andYi, ..., Y, from independent populations with mean

shapesy; | and|u2]. To test between

we could carry out a Hotelling’d? two sample test in

the Procrustes tangent space, where the pole corresponds
to the overall pooled full Procrustes mean shapé.e.

the full Procrustes mean shape calculated by GPA on all
ni + ne individuals). Letvy, ..., v,, andw;,...,w,, be

the partial Procrustes tangent coordinates (with pole

The multivariate normal model is proposed in the tangent

space, where
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and thev; and w; are all mutually independent, and
common covariance matrices are assumed. We write
and.S,, S,, for the sample means and sample covariance
matrices (with divisorsn; and n,) in each group. The

Mahalanobis distance squared betweamdw is

(7.3)

whereS, = (n1.5, + n2S,)/(n1 + ne — 2), ands;, is the
Moore—Penrose generalized inverseSpf(see Definition
7.1). UnderH, we have&; = &, and we use the test

statistic

(7.4)

The test statistic has afi ,,,+,,—/—1 distribution under

H,. Hence, we rejeck, for large values of-.

Example 7.2Consider the gorilla skull data described in
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Section 1.2.2. There arg = 30 female gorilla skulls and

no = 29 male gorilla skulls, withk = 8 landmarks in two
dimensions, and so there até = 2k — 4 = 12 shape
dimensions. To examine the assumptions of the model
we see whether equal covariance matrices in each group
are reasonable. The first three PCs in each group explain
34.8%, 22.9%, 11.2% (females) and 42.0%, 18.0%, 12.4%
(males) of the variability in each group. A plot of the first
PC for each group is given in Figures 70 and 71 showing
fairly similar structures (a contrast with the front of the
face and the back of the braincase-,(a,l) versus the
rest). So we take the equal covariance matrix assumption
as reasonable. A formal test such as BoXitest (cf.
Mardia et al., 1979, p.140) could also be carried out, and

here Box’s)M statistic is67.18, which has an approximate
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chi-squared distribution witfi8 degrees of freedom under
the null hypothesis of equal covariance matrices. Since
P(x3 > 67.18) = 0.8 we cannot reject the null
hypothesis of equal covariance matrices. The percentages
of variability explained by the first three within group
PCs are 37.3%, 16.0%, 14.7% and the first three PCs are
included in Figure 72. In addition, we have no reason to
doubt multivariate normality from the pairwise scatters of
the standardized PC scores of the data (some of the PC
scores are shown in Figure 73).

The observed test statistic 8 = 26.470 and since
P(Fi246 > 4.47) = 0.0001 we have very strong evidence
that the mean shapes are different. So our conclusion
would be that there is a significant difference in mean

shape between the female and male gorilla skulls in the
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Figure 70 The first PC for the gorilla females. The mean shape is draviim veictors to

an icon +3 (—) standard deviations along the first PC away fitee mean.
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Figure 71 The first PC for the gorilla males. The mean shape is drawn vethors to an

icon +3 (—) standard deviations along the first PC away frioenmean.
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midline.

O

7.1.3 Permutation test

The assumptions of the Hotellir® test may be doubted

in certain applications. An alternative procedure is to
consider apermutation test (Good, 1994; Dryden and
Mardia, 1993; Bookstein, 1997b), with the null hypothesis
that the groups have equal mean shapes. For a two sample
permutation test the data are permuted into two groups of
the same size as the groups in the data, and the test statistic
is evaluated for all possible permutations ..., Tp. The
rankingr of the observed test statistiC,, is then used to

give thep-value of the permutation test:
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Figure 72 Principal components for the gorilla data using a pooledhiwigroup

covariance matrix. The first row displays PCs 1, 2 and 3 (frefnntb right) and the second

row displays PCs 9, 11 and 12 (from left to right) . In each fihet mean shape is drawn

with vectors to an icon +3 standard deviations along the P&/dmm the mean. The

vectors on the top row are magnified 3 times and the vectore@hdttom row are

magnified 10 times.
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Figure 73 Pairwise scatter plots of the centroid sizes, the full Rustes distances to the
pooled mean and PC scores 9, 11, 2, 12s1,dFi, cig, ci11, Ciz, Ci12, ¢i1) * for the
gorilla data: males (m) and females (f). These particulasB&@es:;; have the highest
correlation with the observed group shape difference, aadan see a clear separation

between the groups in terms of shape, using score 9 and agrysuibre.
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An alternative to evaluating all; is to consider a number
B (say 100 or 1000) of random permutations, and the
procedure is called #Monte Carlo test. The rankingr

of the observed test statistic frof random permutations

gives a p-value of

Example 7.3Consider the 3D macaque data of Section
1.2.8. There are; = 9 males anch, = 9 females, each
with £ = 7 landmarks inm = 3 dimensions. We wish to
test whether the mean population shapes for both sexes are
equal. After performing full Procrustes GPA on the pooled
dataset we transform to the tangent space coordinates of
Equation (7.1). The dimension of the shape spacd¥ is-

14 [7 x 3 (coordinates)-3 (location) —3 (rotation) —1
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(size)]. Examining the shape variability in the two groups |
seems doubtful that both groups have the same covariance
matrix — the male group is more variable in shape, as seen
in Example 5.1. In spite of this evidence, proceeding with
the Hotelling’sT? test the squared Mahalanobis distance
D? is 28.90 between the groups and Bo= 1.74 and
P(Fy43 > 1.74) = 0.36, and so this is not a significant
difference in mean shape.

However, as the assumption of equal variances is
doubtful a permutation test could be carried out. The data
are randomly split into two groups each of size 9. Out of
99 such permutations the observBdtatistic of Equation
(7.4) had rank 61, giving a-value of 0.4, and so there is

no evidence for a difference in mean shape.
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The sample sizes are very small here and we might

expect the Hotelling’d™ test to be not very powerfull

Bookstein (1991, p.282) and Bookstein and Sampson
(1990) also describe Hotelling'd™ tests for shape
difference using Bookstein coordinates (see Section 7.3),
and they also consider testing for affine or uniform shape

changes (see Section 10.6.3).
7.1.4 Extensions

Further inference, such as testing the equality of the mean
shapes in several groups, proceeds in a similar manner.
An overall pooled full Procrustes mean is taken as the
pole and multivariate analysis of variance (MANOVA)

(see, for example, Mardia et al., 1979, p.333) is carried

out on the Procrustes tangent coordinates. General linear
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models could be proposed in the tangent space and the
full armoury of multivariate data analysis can be used to

analyse shape data, provided variations are small.
7.1.5 Dimension reduction in inference

In some datasets there are few observations and possibly
many landmarks on each individual. Although inference
can be carried out in a suitable tangent space there is often
a problem with the space being over-dimensioned. For
example, a Hotelling’d™ test may not be very powerful
unless there are a large number of observations available.
A practical solution is to perform a PCA on the pooled
datasets and retain the first few PC scores, although there
are obvious dangers, particularly if a true group diffelenc

Is orthogonal to the first few PCs. An alternative approach

Is to delete excess elements in each vector
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7.2 Inference Using Procrustes Statistics Under Isotropy

Another simple approach to statistical inference is to
work with statistics based on squared Procrustes distances
Goodall (1991) has considered such an approach using
approximate chi-squared distributions, following frone th
work of Sibson (1978, 1979) and Langron and Collins
(1985). The underlying model is that configurations are
isotropic normal perturbations from mean configurations,
and the distributions of the squared Procrustes distances
are approximately chi-squared distributions. The proce-
dures require a much more restrictive isotropic model than
the previous section, but when the model is appropriate

more powerful tests result.
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7.2.1 One sample Goodallk test

We consider first the case when a random sample of
n observationsX,..., X, (each ak x m matrix) is
taken from an isotropic normal model with meanand
transformed by an additional location, rotation and scale,

l.e.

Xi = Bi(p+ E)Ti4+ 11y, vee(Ei) ~ N(0,0°[1n),

(7.5)
whereg; > 0 (scale)I'; € SO(m) (rotation) andy; € IR™
(translation), and is small.

The following approximate analysis of variance (ANOVA)

identity holds fori ~ ; and small:

n n

where (1 is the full Procrustes mean ang): is the full
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Procrustes distance of Equation (4.15). The proof can be
seen using Taylor series expansions. Note the similarities
with analysis of variance in classical regression analysis
— the left-hand side of the equation is like a total sum of
squares and the right-hand side is like the residual sum of
squares plus the explained (regression) sum of squares.
Consider testing betweeR, : [u] = [uo] and H; :
(1] # [wo]- Under the null model it can be shown that

approximately (to second order termshk) that

dip (Xi, Ho) ~ T3 Xas (7.6)
independently foi = 1,...,n, whereM = km — m —

m(m — 1)/2 — 1 is the dimension of the shape space,
0 = /0y, anddy = S(ug) = [|Cuol is the centroid
size of uy. The proof can be obtained by Taylor series

expansions, after Sibson (1978), and the proof for the
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m = 2 dimensional case is seen from Equation (6.16),
when discussing the complex Watson distribution.
From the additive property of independent chi-squared

distributions,
'21 d%(Xiv f1o) ~ TgXiM-

In addition, sincel/ parameters are estimatedinve have
n

; d%(XZ-, fi) ~ T(?X%n—l)M

A~

andd?-(uo, f1) is approximately independent 6fd% (X, i).

Hence, approximately

ndi (0, 1) ~ T5XAr, (7.7)
again using the additive property of independent chi-
squared distributions. So, undéf, we have the approx-

imate result

d%(/,bo,/jl/) ~ FM DM
i dp (X ) Y

F=(Mn-1)n (7.8)
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This is valid for small- andy close toj:, and so we reject
H, for large values of this test statistic. We call the test the
one sample Goodall’'sF' test, after Goodall (1991).

If 75 is small, E; is isotropic (but not necessarily normal)

andnM is large, then approximately

>~ dip(Xi, ) ~ N(mgnM, 2rgn M)

1=1

by applying the central limit theorem.

The test based on the isotropic model can be seen
as a special case of the HotellingB? procedure of
Section 7.1.1. If we replac, with s15,_,, wheres? is
the unbiased estimate of variance, then the Mahalanobis

distance of Equation (7.2) becomes

D = s.%||v0 — 0|* = dy(po. 1) /2,
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from Equation (4.30). Now

1 n 1 n
2 —112 2 ~
= g i = — g dF Xi;

Sv 0 11-_1HU UH 0 1i:1 ( ,u)

and hence the test statistic for the one sample Hotelling’s

T? test statistic would be proportional to

iy, 1)) 32 di (X ).

Hence the one sample Hotellings? test under the
Isotropic model would be identical to using tlhestatistic

of Equation (7.8).
7.2.2 Two independent sample Goodal’sest

Consider independent random samples ..., X,,, from
a population modelled by Equation (7.5) with mean
and Yy, ..., Y,, from Equation (7.5) with meam,. Both
populations are assumed to have a common variance for

each coordinate?. We wish to testHy : [u1] = [ue](=
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[10]), say, againstly : [u1] # [ue]. Let[n] and[fs] be the
full Procrustes means of each sample, with icansand
1. Under Hy, with ¢ small, the Procrustes distances are

approximately distributed as

n

1
2 d%'(XU /ll) ~ T(?X%nl—l)kfa

UP)
,2:1 d%«“(}/lv IELQ) ~ 7-()2X%712—1)Mv
1=

1 1
B2 (fiy. fig) ~ 72 <_ _) 2
(11, fl2) ~ 7 o + s X

where iy = o/0p and &g = S(uo). Again, proofs

of the results can be obtained using Taylor series
expansions. In addition these statistics are approximatel
mutually independent (exactly in the case of the first two

expressions). Hence, undél, we have the approximate
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distribution
po =2 B 1) p
mt byl S dR(XG ) X2 AR (Y i) D

(7.9)
and again this result is valid for small. We rejectH,
for large values of this test statistic. We call the test the
two independent sample Goodall'sF' test after Goodall

(1991).

Example 7.4 Consider the schizophrenia data described in
Section 1.2.3. We wish to test whether the mean shapes of
brain landmarks are different in the two groups of control
subjects and schizophrenic patients. There fare- 13
landmarks inm = 2 dimensions. The Procrustes rotated
data for the groups are displayed in Figures 74 and 75. We
see that there are generally circular scatters of points at

each landmark in each group (as required for the isotropic
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Figure 74 The Procrustes rotated brain landmark data for the 14 closigects.
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Figure 75 The Procrustes rotated brain landmark data for the 14 sphiemic patients.
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model).

The percentages of variability explained by the first
three PCs arg1.6%, 21.4%, 13.2% for the controls and
27.1%,21.7%, 4.8% for the schizophrenic patients. Box’s
M test was carried out and there is some evidence against
equal covariance matrices. The root mean square of
in each group i9).068 in the controls and).073 in the
schizophrenia group. Carrying out a likelihood ratio test
for isotropy in each group (e.g Mardia et al., 1979, p.235)
on the 13 non-zero unstandardized scores, we cannot
reject the null hypothesis of isotropy. Of course we only
have small samples here, and so with more data we may
reject isotropy — this topic merits further investigation.
Despite Box'sM test suggesting a difference in covariance

matrices, for illustrative purposes we shall proceed with
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with the GoodallF’ test, which assumes isotropy and equal

variances.
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Figure 76 The full Procrustes mean shapes of the normal subjects ¢(k¥emzophrenic

patients (+) for the brain landmark data, rotated to eachrdily GPA.

The mean configurations are displayed in Figure 76. The
full Procrustes distancé, between the mean shapes is
0.038. The sum of squared full Procrustes distances from

each configuration to its mean shape is 0.140 and so the
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F statistic is 1.89. Sincé’(Fa 572 > 1.89) ~ 0.01 we
have evidence for a significant difference in shape. So,
we conclude that the subjects with schizophrenia have
different shaped mean landmark configurations from the
control subjects.

Following Bookstein (1997b) we also consider a Monte
Carlo test, as described in Section 7.1.3, based on 999
random permutations. The configurations are randomly
assigned into each of the two groups, tRestatistic is
calculated and the proportion of times that the resulfing
statistic exceeds the observed value @0 is thep-value
for the test. From 999 random permutations we obtained
a p-value of 0.04. Hence, we have some evidence that
the mean configurations are different in shape, but with a

largerp-value than for the isotropic based tests.
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If we carry out a Hotelling’sI™® test in the tangent space
we havel’ = 0.834 which is near the centre of the null
distribution (P(F52 5 > 0.834) = 0.66). So, the Hotelling’s
T? provides no evidence for a shape difference, illustrating
that the Hotelling’s7? procedure is less powerful than
Goodall's F' test, when the isotropic normal model holds.
Power is lost because many degrees of freedom are used in
estimating the covariance matrix in the Hotellin@’$ test.

O

Note that the test based on the isotropic model can be
seen as a special case of the two sample Hotelliig’s
procedure of Section 7.1.2. If we replagg with s2 I, o,
where s2 is the unbiased estimate of variance, then the

Mahalanobis distance of Equation (7.3) becomes

D2 = 352“@ — U_JH2 ~ d%‘(ﬂl)ﬁ@)/si’
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from Equation (4.31). Now

1 ni B n9 B
2 = —{zuvi—vuhzlnwj—wHQ}
j:

ny —+ng — 2 i=1

Q

1 {z X+ S0 /@.}0)

ni+mne —2 (im
and so the test statistic for the two sample Hotellirif’s

test statistic would be proportional to

d%‘(lala laQ)
Sty d3(XG, i) + 352 d(Y), fio)

Hence the Hotelling'sI™ test under the isotropic model
would be identical to using thé’ statistic of Equation

(7.9).
7.2.3 One way analysis of variance

Consider a balanced analysis of variance with independent
random sample$X;i, ..., X;,)t, i = 1,...,ng, from ng
groups, each of size. Let[i;] be the group full Procrustes

means and| is the overall pooled full Procrustes mean
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shape. A suitable test statistic (Goodall, 1991) is

Z?gl d%(ﬂﬁ /:L)
(ng —1) 2?21 =1 d%(ij', ﬂj)

F=n(n—-1)ng

Under the null hypothesis of equal means the approximate
distribution of F' is F,,_1)mnem-1yn and the null

hypothesis is rejected for large values of the statisticc&i
d%(ﬂ17 /:LQ) =2 (d%'(/llv ﬂ) + d%‘(ﬂ% ﬂ)) )

the two sample test of the previous section (with= n,)

IS a special case.



